Anther formation in Monanthess anaginensis and M. muralis (Crassulaceae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Similarities and differences between Monanthes anagensis and M. muralis were revealed as a result of the study of their anther development and structure. The similarities: 4-locular isobilateral (on transverse section) anther with a 4-rayed connective; it does not fuse with the filament in the basal part, and the connective is visible only in the middle part; and in the upper and lower parts of the anther, the microsporangia of each theca are fused with their lateral surfaces; the microsporangium wall on the distal side is formed according to the centrifugal type; simultaneous microsporogenesis, tetrahedral tetrads of microspores, 2-celled pollen grains; tannins accumulate in the epidermal cells on the distal side of the microsporangium wall; parietal tapetum (amoeboid tapetum as a variation). Differences: length of anther zones; initial stages of microsporangium formation; the structure of the formed microsporangium wall: four (M. anagensis) or five (M. muralis) layers of cells, with the species differing in the number of middle layers; the process of specialization of endothecium cells, namely in M. muralis the cells increase in radial direction after the stage of prophase I of meiosis, while in M. anagensis after the stage of microspore tetrads; destruction of cell walls in the tapetum occurs at the stage of microspore tetrads in M. anagensis, and of single microspores in M. muralis.

Based on the complex of characteristics of the anther structure and development, the studied species of the genus Monanthes show the greatest similarity with members of the genera Aeonium and Sedum. The data obtained are not in conflict with cladistic constructs. The studied species Aeonium balsamiferum and A. ciliatum, as well as Monanthes anagensis and M. muralis belong to the same Aeonium clade, taking an intermediate position between the Telephium (Sedum kamtschaticum) and Acre (S. palmeri) clades.

Full Text

Restricted Access

About the authors

G. M. Anisimova

Komarov Botanical Institute of RAS

Author for correspondence.
Email: galina0353@mail.ru
Russian Federation, Prof. Popov Str., 2, St. Petersburg, 197022

I. I. Shamrov

Herzen State Pedagogical University of Russia

Email: shamrov52@mail.ru
Russian Federation, Moika River Emb., 48, St. Petersburg, 191186

References

  1. Adonina N.P. 2000. Architectonics of life forms in plants of the family Crassulaceae DC. – Trudy St. Petersburg Research Institute of Forestry. St. Petersburg. P. 139–150.
  2. Anisimova G.M. 2016. Anther structure, microsporogenesis and pollen grain in Kalanchoe nyikae (Crassulaceae). – Bot. Zhurn. 101(12):1378–1389 (In Russ.).
  3. Anisimova G.M. 2020. Anther development and structure in Sedum kamtschaticum and Sedum palmeri (Crassulaceae). – Bot. Zhurn. 105(11): 1093–1110 (In Russ.). https://doi.org/10.31857/S0006813620090021
  4. Anisimova G.M., Shamrov I.I. 2018. Gynoecium and ovule morphogenesis in Kalanchoe laxiflora and K. tubiflora (Crassulaceae). – Bot. Zhurn. 103(6): 675–694 (In Russ.). https://doi.org/10.1134/S0006813618060017
  5. Anisimova G.M., Shamrov I.I. 2021a. Gynoecium and ovule structure in Sedum kamtschaticum and Sedum palmeri (Crassulaceae) – Bot. Zhurn. 106(4): 50–68 (In Russ.). https://doi.org/10.31857/S000681362104002
  6. Anisimova G.M., Shamrov I.I. 2021b. Comparative analysis of gynoecium and ovule structure in some species of Sedum and Kalanchoe (Crassulaceae). – Bull. Main Bot. Gard. 4: 31–39 (In Russ.). https://doi.org/10.25791/BBGRAN.04.2021.1097
  7. Anisimova G.M., Shamrov I.I. 2022a. Anther wall formation in Aeonium balsamiferum and A. ciliatum (Crassulaceae). – Bot. Zhurn. 107(6): 42–62 (In Russ.). https://doi.org/10.31857/S0006813622060035
  8. Anisimova G.M., Shamrov I.I. 2022b. Anther wall formation in Aeonium balsamiferum and A. ciliatum (Crassulaceae). – Doklady Biological Sciences. 506(1): 160–171. https://doi.org/10.1134/S0012496622050027
  9. Anisimova G.M., Shamrov I.I. 2023. Anther structure in Crassula ericoides, C. intermedia and C. multicava (Crassulaceae). – Bot. Zhurn. 108(4): 22–36 (In Russ.). https://doi.org/10.31857/S0006813623040026 EDN: OZEEKB.
  10. Davis G.L. 1966. Systematic embryology of angiosperms. New York etc. 528 p.
  11. Goncharova S.B. 2006. Subfamily Sedoideae (Crassulaceae) of flora of the Russian Far East. Vladivostok. 222 p. (In Russ.).
  12. Goncharova S.B., Goncharov A.A. 2009. Molecular phylogeny and systematics of flowering plants from family Crassulaceae DC. – Molecular Biology. 43(5): 856–865 (In Russ.).
  13. Grigorieva V.V., Britski D.A. 2001. Pollen morphology of representatives of subfamily Sedoideae (Crassulaceae). – In: Problems of modern palynology. Proc. XIIIth Russian palynological conference. Vol. 1. Syktyvkar. P. 22–25 (In Russ.).
  14. Ham R.C.H.J. van, t’Hart H. 1998. Phylogenetic relationships in the Crassulaceae inferred from chloroplast DNA restriction-site variation. – Amer. J. Bot. 85: 123–134.
  15. Han S., De Bi, Yi R., Ding H., Wu L., Kan X. 2022. Plastome evolution of Aeonium and Monanthes (Crassulaceae): insights into the variation of plastomic tRNAs, and the patterns of codon usage and aversion. – Planta. 256(2): 35. https://doi.org/10.1007/s00425-022-03950-y
  16. Hart H. 1974. The pollen morphology of 24 species of the genus Sedum L. – Pollen and Spores. 16(4): 373–387.
  17. Kamelina O.P. 2009. Systematic embryology of flowering plants. Dicotyledons. Barnaul. 501 p. (In Russ.).
  18. Mes T.H.M., van Brederode J., ‘t Hart H. 1996. Origin of the woody Macaronesian Sempervivoideae and the phylogenetic position of the East African species of Aeonium. – Bot. Acta. 109: 477–491.
  19. Mes T.H.M., Wijers G.-J., 't Hart H. 1997.Phylogenetic relationships in Monanthes (Crassulaceae) based on morphological, chloroplast and nuclear DNA variation. – J. Evol. Biol. 10: 193–216. https://doi.org/10.1046/j.1420-9101.1997.10020193.x
  20. Mes T.H.M., Wijers G.-J., 't Hart H. 2002. Phylogenetic relationships in Monanthes (Crassulaceae) based on morphological, chloroplast and nuclear DNA variation. – J. Evol. Biol. 10: 193–216. https://doi.org/10.1046/j.1420-9101.1997.10020193.x
  21. Mort M.E., Soltis D.E., Soltis P.S., Francisco-Ortega J., Santos-Guerra A. 2001. Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data. – Amer. J. Bot. 88: 76–91.
  22. Mort M.E., Soltis D.E., Soltis P.S., Francisco-Ortega J., Santos-Guerra A. 2004. Phylogenetics and evolution of the Macaronesian clade of Crassulaceae inferred from nuclear and chloroplast sequence data. – Syst. Bot. 27(2): 272–288. https://doi.org/10.1943/0363-6445-27.2.271
  23. Mort M.E., O’Leary T.R., Carrillo-Reyes P., Nowell T., Archibald J.K., Randle Ch.P. 2010. Phylogeny and evolution of Crassulaceae: past, present, and future. – Schumannia 6. Biodiversity and Ecology. 3: 69–86.
  24. Nikiticheva Z.I. 1985. Crassulaceae family. – In: Comparative embryology of flowering plants. Brunneliaceae-Tremandraceae. Leningrad. P. 29–34 (In Russ.).
  25. Nikulin V.Yu. 2017. Phylogenetic connections in Sedum L. (Crassulaceae J. St.-Hil.) and related genera on the basis of comparison of nucleotid sequence of nuclear and chloroplast DNA: Dis. … cand. biol. nauk. Vladivostok. 114 p. (In Russ.).
  26. Nikulin V.Yu., Gontcharov A.A. 2017. Molecular-phylogenetic characterization of Sedum (Crassulaceae) and closely related genera based on cpDNA gene matK and its rDNA sequence comparisons. – Bot. Zhurn. 102(3): 309–328 (In Russ.).
  27. Nyffeler R. 1992. A taxonomic revision of the genus Monanthes Haworth (Crassulaceae). – Bradleya. 10: 49–82. https://doi.org/10.25223/brad.n10.1992.a5
  28. Pausheva Z.P. 1974. Practical work on plant cytology. Мoscow. 288 p. (In Russ.).
  29. Sachs J. 1882. Text-book of botany morphological and physiological. Oxford. 980 p.
  30. Shamrov I.I. 2008a. Ovule of flowering plants: structure, functions, origin. Moscow. 356 p. (In Russ.).
  31. Shamrov I.I. 2008b. Formation of sporangia in higher plants. – Bot. Zhurn. 93(12): 1817–1845 (In Russ.).
  32. Shamrov I.I., Anisimova G.M., Babro A.A. 2019. Formation of anther microsporangium wall, and typification of tapetum in angiosperms. – Bot. Zhurn. 104(7): 1001–1032 (In Russ.). https://doi.org/10.1134/S0006813619070093
  33. Shamrov I.I., Anisimova G.M., Babro A.A. 2020. Early stages of anther development in flowering plants. – Botanica Pacifica. A journal of plant science and conservation. 9(2): 1–10. https://doi.org/10.17581/bp.2020.09202
  34. Shamrov I.I., Anisimova G.M., Babro A.A. 2021. Tapetum types and forms in angiosperms. – Proceedings of the Latvian Academy of Sciences, Section B. 75(3): 167–179. https://doi.org/10.2478/prolas-2021-0026
  35. Sin J.-H., Yoo Y.-G., Park K.-R. 2002. A palynotaxonomic studies of Korean Crassulaceae. – Korean J. Electron Microscopy. 32(4): 345–360.
  36. Smith G.M. 1938. Cryptogamic botany. New York; London. Vol. 2. 380 p.
  37. Teryokhin E.S., Batygina T.B., Shamrov I.I. 2002. New approach to classifying modes of microsporangium wall formation. – In: Embryology of flowering plants. Terminology and concepts. Enfield (NH), USA- Plymouth, UK. Vol. 1. P. 32–39.
  38. Zhinkina N.A., Evdokimova E.E., Shamrov I.I. 2022. Specific anther structure in Codonopsis clematidea (Campanulaceae). – Bot. Zhurn. 107(3): 287–301 (In Russ.). https://doi.org/10.31857/S0006813621120115

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of flower, stamen and anther in Monanthes muralis (1–3, 5, 7) and M. anagensis (2, 6, 8): 1–3 – 6-merous (1), 7-merous (2) and 5-merous (3) flowers, glandular hairs are visible on the sepals and petals; 4 – position of stamens on the receptacle, internal stamens have longer filaments; 5, 6 – anther structure (SEM), anther thecae (5) and a vertical suture resulting from the fusion of microsporangia in the upper part of the anther are visible (6); 7, 8 – structure of the anther in the lower (7) and middle (8) parts; an – anther, cn – connective, g – gynoecium, p – petal, s – sepal, sg – stigma, st – stamen, st f – stamen filament, v b – vascular bundle. Scale bar, µm: 1, 4 – 50; 2, 3, 7 – 20; 5, 6 – 100; 8 – 5.

Download (817KB)
3. Fig. 2. Anther structure in Monanthes anagensis (cross sections): 1–3 – anther structure: before dehiscence in the middle zone fused with the stamen filament (1), in dehisced anther – in the basal part free from the filament (2), in the middle (3) and upper (4) parts; fibrous thickenings are formed in the endothecium and most anther cells, tannins are visible in the epidermal cells and around the vascular bundle; an – anther, cn – connective, p g – pollen grain, st f – stamen filament, tn – tannins, v b – vascular bundle. Scale bars, µm: 10.

Download (296KB)
4. Fig. 3. Early stages of anther formation in Monanthes anagensis (transverse sections): 1, 2 – anther primordium, divisions of the microsporangium initials, the formation of cells of the inner tapetum, archesporium and the initials of the lateral parts of the wall; 3 – as a result of division of the archesporial cell, sporogenous (inside) and parietal (outside) cells are formed and then, due to formative divisions, their number increases; 4 – formation of a layer of the outer tapetum and cell divisions of the outer parietal layer into the endothecium and the middle layer, tannins are visible in the epidermal cells; a c – archesporial cell, c i mc – central initial of microsporangium, e – epiderm, en – endothecium, i t – inner tapetum, l i w mc – lateral initials of microsporangium wall, l t – lateral tapetum, m l – middle layer, o p l – outer parietal layer, o t – outer tapetum, p c – parietal cell, s c – sporogenous cell, s t – sporogenous tissue, tn – tannins. Scale bar, µm: 10.

Download (288KB)
5. Fig. 4. Early stages of anther formation in Monanthes muralis (transverse sections): 1–3 – anther primordium, divisions of the microsporangium initials, the formation of cells of the inner tapetum, archesporium and the initials of the lateral parts of the wall; 4 – periclinal divisions of the archesporial cells into sporogenous (inward) and parietal (outward) cells; 5 – formation of the tapetum layer from inner and lateral sides and the beginning of divisions of the cells of parietal layer into outer and inner layers, the beginning of tannin deposition in the epiderm; a c – archesporial cell, c i mc – central initial of microsporangium, e – epiderm, i p l – inner parietal layer, i t – inner tapetum, l i w mc – lateral initials of microsporangium wall, l t – lateral tapetum, o p l – outer parietal layer, o t – outer tapetum, p c – parietal cell, s c – sporogenous cell, tn – tannins. Scale bar, µm: 5.

Download (286KB)
6. Fig. 5. Microsporangium wall structure during micriospogenesis in Monanthes muralis (transverse sections): 1 – microsporangium wall before meiosis; 2 – microsporangium wall during the prophase I of meiosis, formation of two middle layers; 3, 4 – microsporangium wall at the stage of diad of nuclei (3), and scheme of anther in the middle part (4), tannins accumulate in epidermal cells; e – epiderm, en – endothecium, m – microsporocyte, mc – microsporangium, m l – middle layer, t – tapetum, tn – tannins, v b – vascular bundle. Scale bars, µm: 1–3 – 5; 4 – 100.

Download (447KB)
7. Fig. 6. Microsporangium wall structure during formation of megaspore tetrads and pollen grain in Monanthes anagensis (transverse sections): 1 – microsporangium wall during the formation of microspore tetrads, the beginning of cell degeneration of the middle layer, destruction of the walls between the tapetum cells occurred, orbicules are visible on the inner tapetal membrane; 2 – wall of the microsporangium at the stage of single microspores, the cells of the middle layer are almost destroyed, the radial walls of the endothecium cells are thickened, the size of protoplasts in the tapetum increases, and the cells themselves become highly vacuolated; 3, 4 – microsporangium wall at the stomium, the cells in the area of dehiscence are tightly closed, tannin deposition in the epidermal cells (3) and an anther scheme in its middle part (4); e – epiderm, en – endothecium, m l – middle layer, ms – microspore, p g – pollen grain, t – tapetum, t ms – tetrad of microspores, tn – tannins. Scale bars, µm: 1–3 – 10; 4 – 20.

Download (364KB)
8. Fig. 7. Microsporangium wall structure during formation of megaspore tetrads and pollen grain in Monanthes muralis (transverse sections): 1 – microsporangium wall during the formation of microspore tetrads, the beginning of cell degeneration of the outer middle layer, destruction of the walls between the tapetum cells occurred, orbicules are visible on the inner tapetal membrane; 2 – wall of the microsporangium at the stage of early single microspores, the cells of the inner middle layer begin to destroy, the radial walls of the endothecium cells are thickened, the size of protoplasts in the tapetum increases, and the cells themselves become highly vacuolated; 3 – wall of the microsporangium at the stage of late single microspores, the remains of tapetum cells are visible, the septa in thecae are destroyed, in the area of the stomium the cells are tightly closed; 4 – microsporangium wall before the anther dehiscence, divisions occur in the microspores and 2-celled pollen grains are formed; 5 – scheme of the dehisced anther in the middle part. At all stages of development, tannin deposition is observed in the cells of the epidermis; e – epiderm, en – endothecium, m l – middle layer, ms – microspore, p g – pollen grain, t – tapetum, ms – tetrad of microspores, tn – tannins. Scale bars, µm: 1–3 – 10; 4 – 20; 5 – 100.

Download (315KB)
9. Fig. 8. Structure of 3-colporate pollen grains in Monanthes muralis (1–3) and M. anagensis (4–6): 1, 4– equatorial view of pollen grain; 2, 5, 6 – general view of the pollen grains, apertures are visible; 3 – surface of pollen grain. Scale bars, µm: 1 – 10; 2, 4–6 – 5; 3 – 1.

Download (721KB)

Copyright (c) 2024 Russian Academy of Sciences