Anther formation in Monanthess anaginensis and M. muralis (Crassulaceae)
- Authors: Anisimova G.M.1, Shamrov I.I.2
-
Affiliations:
- Komarov Botanical Institute of RAS
- Herzen State Pedagogical University of Russia
- Issue: Vol 109, No 5 (2024)
- Pages: 428-445
- Section: COMMUNICATIONS
- URL: https://rjmseer.com/0006-8136/article/view/666561
- DOI: https://doi.org/10.31857/S0006813624050026
- EDN: https://elibrary.ru/QKIPNX
- ID: 666561
Cite item
Abstract
Similarities and differences between Monanthes anagensis and M. muralis were revealed as a result of the study of their anther development and structure. The similarities: 4-locular isobilateral (on transverse section) anther with a 4-rayed connective; it does not fuse with the filament in the basal part, and the connective is visible only in the middle part; and in the upper and lower parts of the anther, the microsporangia of each theca are fused with their lateral surfaces; the microsporangium wall on the distal side is formed according to the centrifugal type; simultaneous microsporogenesis, tetrahedral tetrads of microspores, 2-celled pollen grains; tannins accumulate in the epidermal cells on the distal side of the microsporangium wall; parietal tapetum (amoeboid tapetum as a variation). Differences: length of anther zones; initial stages of microsporangium formation; the structure of the formed microsporangium wall: four (M. anagensis) or five (M. muralis) layers of cells, with the species differing in the number of middle layers; the process of specialization of endothecium cells, namely in M. muralis the cells increase in radial direction after the stage of prophase I of meiosis, while in M. anagensis after the stage of microspore tetrads; destruction of cell walls in the tapetum occurs at the stage of microspore tetrads in M. anagensis, and of single microspores in M. muralis.
Based on the complex of characteristics of the anther structure and development, the studied species of the genus Monanthes show the greatest similarity with members of the genera Aeonium and Sedum. The data obtained are not in conflict with cladistic constructs. The studied species Aeonium balsamiferum and A. ciliatum, as well as Monanthes anagensis and M. muralis belong to the same Aeonium clade, taking an intermediate position between the Telephium (Sedum kamtschaticum) and Acre (S. palmeri) clades.
Keywords
Full Text

About the authors
G. M. Anisimova
Komarov Botanical Institute of RAS
Author for correspondence.
Email: galina0353@mail.ru
Russian Federation, Prof. Popov Str., 2, St. Petersburg, 197022
I. I. Shamrov
Herzen State Pedagogical University of Russia
Email: shamrov52@mail.ru
Russian Federation, Moika River Emb., 48, St. Petersburg, 191186
References
- Adonina N.P. 2000. Architectonics of life forms in plants of the family Crassulaceae DC. – Trudy St. Petersburg Research Institute of Forestry. St. Petersburg. P. 139–150.
- Anisimova G.M. 2016. Anther structure, microsporogenesis and pollen grain in Kalanchoe nyikae (Crassulaceae). – Bot. Zhurn. 101(12):1378–1389 (In Russ.).
- Anisimova G.M. 2020. Anther development and structure in Sedum kamtschaticum and Sedum palmeri (Crassulaceae). – Bot. Zhurn. 105(11): 1093–1110 (In Russ.). https://doi.org/10.31857/S0006813620090021
- Anisimova G.M., Shamrov I.I. 2018. Gynoecium and ovule morphogenesis in Kalanchoe laxiflora and K. tubiflora (Crassulaceae). – Bot. Zhurn. 103(6): 675–694 (In Russ.). https://doi.org/10.1134/S0006813618060017
- Anisimova G.M., Shamrov I.I. 2021a. Gynoecium and ovule structure in Sedum kamtschaticum and Sedum palmeri (Crassulaceae) – Bot. Zhurn. 106(4): 50–68 (In Russ.). https://doi.org/10.31857/S000681362104002
- Anisimova G.M., Shamrov I.I. 2021b. Comparative analysis of gynoecium and ovule structure in some species of Sedum and Kalanchoe (Crassulaceae). – Bull. Main Bot. Gard. 4: 31–39 (In Russ.). https://doi.org/10.25791/BBGRAN.04.2021.1097
- Anisimova G.M., Shamrov I.I. 2022a. Anther wall formation in Aeonium balsamiferum and A. ciliatum (Crassulaceae). – Bot. Zhurn. 107(6): 42–62 (In Russ.). https://doi.org/10.31857/S0006813622060035
- Anisimova G.M., Shamrov I.I. 2022b. Anther wall formation in Aeonium balsamiferum and A. ciliatum (Crassulaceae). – Doklady Biological Sciences. 506(1): 160–171. https://doi.org/10.1134/S0012496622050027
- Anisimova G.M., Shamrov I.I. 2023. Anther structure in Crassula ericoides, C. intermedia and C. multicava (Crassulaceae). – Bot. Zhurn. 108(4): 22–36 (In Russ.). https://doi.org/10.31857/S0006813623040026 EDN: OZEEKB.
- Davis G.L. 1966. Systematic embryology of angiosperms. New York etc. 528 p.
- Goncharova S.B. 2006. Subfamily Sedoideae (Crassulaceae) of flora of the Russian Far East. Vladivostok. 222 p. (In Russ.).
- Goncharova S.B., Goncharov A.A. 2009. Molecular phylogeny and systematics of flowering plants from family Crassulaceae DC. – Molecular Biology. 43(5): 856–865 (In Russ.).
- Grigorieva V.V., Britski D.A. 2001. Pollen morphology of representatives of subfamily Sedoideae (Crassulaceae). – In: Problems of modern palynology. Proc. XIIIth Russian palynological conference. Vol. 1. Syktyvkar. P. 22–25 (In Russ.).
- Ham R.C.H.J. van, t’Hart H. 1998. Phylogenetic relationships in the Crassulaceae inferred from chloroplast DNA restriction-site variation. – Amer. J. Bot. 85: 123–134.
- Han S., De Bi, Yi R., Ding H., Wu L., Kan X. 2022. Plastome evolution of Aeonium and Monanthes (Crassulaceae): insights into the variation of plastomic tRNAs, and the patterns of codon usage and aversion. – Planta. 256(2): 35. https://doi.org/10.1007/s00425-022-03950-y
- Hart H. 1974. The pollen morphology of 24 species of the genus Sedum L. – Pollen and Spores. 16(4): 373–387.
- Kamelina O.P. 2009. Systematic embryology of flowering plants. Dicotyledons. Barnaul. 501 p. (In Russ.).
- Mes T.H.M., van Brederode J., ‘t Hart H. 1996. Origin of the woody Macaronesian Sempervivoideae and the phylogenetic position of the East African species of Aeonium. – Bot. Acta. 109: 477–491.
- Mes T.H.M., Wijers G.-J., 't Hart H. 1997.Phylogenetic relationships in Monanthes (Crassulaceae) based on morphological, chloroplast and nuclear DNA variation. – J. Evol. Biol. 10: 193–216. https://doi.org/10.1046/j.1420-9101.1997.10020193.x
- Mes T.H.M., Wijers G.-J., 't Hart H. 2002. Phylogenetic relationships in Monanthes (Crassulaceae) based on morphological, chloroplast and nuclear DNA variation. – J. Evol. Biol. 10: 193–216. https://doi.org/10.1046/j.1420-9101.1997.10020193.x
- Mort M.E., Soltis D.E., Soltis P.S., Francisco-Ortega J., Santos-Guerra A. 2001. Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data. – Amer. J. Bot. 88: 76–91.
- Mort M.E., Soltis D.E., Soltis P.S., Francisco-Ortega J., Santos-Guerra A. 2004. Phylogenetics and evolution of the Macaronesian clade of Crassulaceae inferred from nuclear and chloroplast sequence data. – Syst. Bot. 27(2): 272–288. https://doi.org/10.1943/0363-6445-27.2.271
- Mort M.E., O’Leary T.R., Carrillo-Reyes P., Nowell T., Archibald J.K., Randle Ch.P. 2010. Phylogeny and evolution of Crassulaceae: past, present, and future. – Schumannia 6. Biodiversity and Ecology. 3: 69–86.
- Nikiticheva Z.I. 1985. Crassulaceae family. – In: Comparative embryology of flowering plants. Brunneliaceae-Tremandraceae. Leningrad. P. 29–34 (In Russ.).
- Nikulin V.Yu. 2017. Phylogenetic connections in Sedum L. (Crassulaceae J. St.-Hil.) and related genera on the basis of comparison of nucleotid sequence of nuclear and chloroplast DNA: Dis. … cand. biol. nauk. Vladivostok. 114 p. (In Russ.).
- Nikulin V.Yu., Gontcharov A.A. 2017. Molecular-phylogenetic characterization of Sedum (Crassulaceae) and closely related genera based on cpDNA gene matK and its rDNA sequence comparisons. – Bot. Zhurn. 102(3): 309–328 (In Russ.).
- Nyffeler R. 1992. A taxonomic revision of the genus Monanthes Haworth (Crassulaceae). – Bradleya. 10: 49–82. https://doi.org/10.25223/brad.n10.1992.a5
- Pausheva Z.P. 1974. Practical work on plant cytology. Мoscow. 288 p. (In Russ.).
- Sachs J. 1882. Text-book of botany morphological and physiological. Oxford. 980 p.
- Shamrov I.I. 2008a. Ovule of flowering plants: structure, functions, origin. Moscow. 356 p. (In Russ.).
- Shamrov I.I. 2008b. Formation of sporangia in higher plants. – Bot. Zhurn. 93(12): 1817–1845 (In Russ.).
- Shamrov I.I., Anisimova G.M., Babro A.A. 2019. Formation of anther microsporangium wall, and typification of tapetum in angiosperms. – Bot. Zhurn. 104(7): 1001–1032 (In Russ.). https://doi.org/10.1134/S0006813619070093
- Shamrov I.I., Anisimova G.M., Babro A.A. 2020. Early stages of anther development in flowering plants. – Botanica Pacifica. A journal of plant science and conservation. 9(2): 1–10. https://doi.org/10.17581/bp.2020.09202
- Shamrov I.I., Anisimova G.M., Babro A.A. 2021. Tapetum types and forms in angiosperms. – Proceedings of the Latvian Academy of Sciences, Section B. 75(3): 167–179. https://doi.org/10.2478/prolas-2021-0026
- Sin J.-H., Yoo Y.-G., Park K.-R. 2002. A palynotaxonomic studies of Korean Crassulaceae. – Korean J. Electron Microscopy. 32(4): 345–360.
- Smith G.M. 1938. Cryptogamic botany. New York; London. Vol. 2. 380 p.
- Teryokhin E.S., Batygina T.B., Shamrov I.I. 2002. New approach to classifying modes of microsporangium wall formation. – In: Embryology of flowering plants. Terminology and concepts. Enfield (NH), USA- Plymouth, UK. Vol. 1. P. 32–39.
- Zhinkina N.A., Evdokimova E.E., Shamrov I.I. 2022. Specific anther structure in Codonopsis clematidea (Campanulaceae). – Bot. Zhurn. 107(3): 287–301 (In Russ.). https://doi.org/10.31857/S0006813621120115
Supplementary files
