Glandular trichomes of leaves and flowers in three Pelargonium species (Geraniaceae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We investigated glandular trichomes located on leaves and flowers of three Pelargonium (Geraniaceae) species: P. odoratissimum , P. exstipulatum and P. vitifolium . The aim of our research was to study the morphology and anatomy of the secretory structures located on aboveground parts of these plants, to specify their localization and frequency of occurrence, and to identify interspecific differences in their structure and distribution. The plant material was collected from greenhouses of the Komarov Botanical Institute RAS and examined using the methods of light microscopy and scanning electron microscopy. Glandular trichomes and simple hairs occur on the surface of leaves and flower elements. The glandular trichomes are the most frequent on the leaves of P. odoratissimum . According to our data, there is no de novo formation of trichomes during the leaf elongation. Five morphological types of glandular trichomes were described. Most of them are uniseriate and capitate (except for the third and fifth types). The trichomes of the third type are straight, while the trichomes of the fifth type are biseriate. The first type is the most frequent, as it can be found on the surface of all organs in every of the investigated species. The trichomes of the first and the third types can form a subcuticular secretory cavity. We have also revealed a unique fifth type of glandular trichomes with a multiseriate stalk that was not described before. The length of glandular trichomes can vary widely (especially in the second type), and the diameter of the secretory cell is a stable character within each morphological type. The largest diversity of trichomes is found in P. exstipulatum , the least in P. vitifolium . We also described interspecific differences in the morphology and localization of certain trichome types. This feature can be used for taxonomical purposes.

Full Text

Restricted Access

About the authors

U. A. Ryabukha

Komarov Botanical Institute RAS

Author for correspondence.
Email: URyabukha@binran.ru
Russian Federation, Prof. Popova Str., 2, St. Petersburg, 197022

L. E. Muravnik

Komarov Botanical Institute RAS

Email: URyabukha@binran.ru
Russian Federation, Prof. Popova Str., 2, St. Petersburg, 197022

References

  1. Abbas F., Ke Y., Yu R., Yue Y., Amanullah S., Jahangir M.M., Fan Y. 2017. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. – Planta. 246 (5): 803 – 816. h ttps://doi.org/10.1007/s00425-017-2749-x
  2. Aedo C. 2012. Revision of Geranium (Geraniaceae) in the New World. – Syst. Bot. Monographs. 95: 1–550.
  3. Aedo C., García M.Á., Alarcón M.L., Aldasoro J.J., Navarro C. 2007. Taxonomic revision of Geranium subsect. Mediterranea (Geraniaceae). – Syst. Bot. 32 (1): 93–128.
  4. Agren J., Schemske D.W. 1994. Evolution of trichome number in a naturalized population of Brassica rapa . – Am. Nat. 143 (1): 1–13.
  5. Arshad M., Silvestre J., Merlina G., Dumat C., Pinelli E., Kallerhoff J. 2011. Thidiazuron-induced shoot organogenesis from mature leaf explants of scented Pelargonium capitatum cultivars. – Plant Cell Tiss. Org. Cult. 108 (2): 315–322. h ttps://doi.org/10.1007/s11240-011-0045-1
  6. Babosha A.V., Ryabchenko A.S., Kumachova T.K. 2023. Micromorphology of the Leaf Epidermis Surface in Some Pyrinae Species (Rosaceae). – Bot. Zhurn. 108 (1): 23–36. h ttps://doi.org/10.31857/s0006813623010027
  7. Barhoumi Z., Djebali W., Abdelly C., Chaibi W., Smaoui A. 2008. Ultrastructure of Aeluropus littoralis leaf salt glands under NaCl stress. – Protoplasma. 233 (3–4): 195–202. h ttps://doi.org/10.1007/s00709-008-0003-x
  8. Bautista M., Madrigal-Santillan E., Morales-Gonzalez A., Gayosso-De-Lucio J.A., Madrigal-Bujaidar E., Chamorro-Cevallos G., Alvarez-Gonzalez I., Benedi J., Aguilar-Faisal J.L., Morales-Gonzalez J.A. 2015. An alternative hepatoprotective and antioxidant agent: the Geranium . – Afr. J. Tradit. Complement. Altern. Med. 12 (4). h ttps://doi.org/10.4314/ajtcam.v12i4.15
  9. Bergman M.E., Chavez A., Ferrer A., Phillips M.A. 2020. Distinct metabolic pathways drive monoterpenoid biosynthesis in a natural population of Pelargonium graveolens . – J. Exp. Bot. 71 (1): 258–271. h ttps://doi.org/10.1093/jxb/erz397
  10. Boukhatem M.N., Kameli A., Saidi F. 2013. Essential oil of Algerian rose-scented geranium ( Pelargonium graveolens ): Chemical composition and antimicrobial activity against food spoilage pathogens. – Food Control. 34 (1): 208–213. h ttps://doi.org/10.1016/j.foodcont.2013.03.045
  11. Boukhris M., Ben Nasri-Ayachi M., Mezghani I., Bouaziz M., Boukhris M., Sayadi S. 2013. Trichomes morphology, structure and essential oils of Pelargonium graveolens L’Hér. (Geraniaceae). – Ind. Crops Prod. 50: 604–610. h ttps://doi.org/10.1016/j.indcrop.2013.08.029
  12. Bussmann R.W., Glenn A., Sharon D., Chait G., Díaz D., Pourmand K., Jonat B., Somogy S., Guardado G., Aguirre C. 2011. Antibacterial activity of northern Peruvian medicinal plants. – Ethnobot. Res. Appl. 9: 67–96.
  13. Bussmann R.W., Sharon D. 2006. Traditional medicinal plant use in Loja province, Southern Ecuador. – J. Ethnobiol. Ethnomed. 2: 44. h ttps://doi.org/10.1186/1746-4269-2-44
  14. Ćavar S., Maksimović M. 2012. Antioxidant activity of essential oil and aqueous extract of Pelargonium graveolens L’Her. – Food Control. 23 (1): 263–267. h ttps://doi.org/10.1016/j.foodcont.2011.07.031
  15. Chen X., Wegner L.H., Gul B., Yu M., Shabala S. 2023. Dealing with extremes: insights into development and operation of salt bladders and glands. – Crit. Rev. Plant Sci. 43 (3): 158–170. h ttps://doi.org/10.1080/07352689.2023.2285536
  16. Cho B.-S., Ko K.-N., Kim E.-S. 1999. Ultrastructural study of glandular trichomes in Pelargonium peltatum . – Appl. Microsc. 29 (1): 125–136.
  17. Dudareva N., Pichersky E. 2000. Biochemical and molecular genetic aspects of floral scents. – Plant Physiol. 122 (3): 627–633.
  18. Duke S., Canel C., Rimando A., Telle M., Duke M., Paul R. 2000. Current and potential exploitation of plant glandular trichome productivity. – Adv. Bot. Res. 31: 121–151. h ttps://doi.org/10.1016/S0065-2296(00)31008-4
  19. Eiasu B.K., Steyn J.M., Soundy P. 2012. Physiomorphological response of rose-scented geranium ( Pelargonium spp.) to irrigation frequency. – S. Afr. J. Bot. 78: 96 – 103. h ttps://doi.org/10.1016/j.sajb.2011.05.013
  20. El Aanachi S., Gali L., Nacer S.N., Bensouici C., Dari K., Aassila H. 2020. Phenolic contents and in vitro investigation of the antioxidant, enzyme inhibitory, photoprotective, and antimicrobial effects of the organic extracts of Pelargonium graveolens growing in Morocco. – Biocatal. Agric. Biotechnol. 29: 101819.
  21. Ercil D., Kaloga M., Radtke O.A., Sakar M.K., Kiderlen A.F., Kolodziej H. 2005. O-galloyl flavonoids from Geranium pyrenaicum and their in vitro antileishmanial activity. – Turk. J. Chem. 29 (4): 437–443.
  22. Fahn A. 1988. Secretory tissues in vascular plants. – New Phytol. 108: 229–257.
  23. Feng Z., Bartholomew E.S., Liu Z., Cui Y., Dong Y., Li S., Wu H., Ren H., Liu X. 2021. Glandular trichomes: new focus on horticultural crops. – Hortic. Res. 8 (1): 158. h ttps://doi.org/10.1038/s41438-021-00592-1
  24. Fiz O., Vargas P., Alarcón M.L., Aldasoro J.J. 2006. Phylogenetic relationships and evolution in Erodium (Geraniaceae) based on trnL-trnF sequences. – Syst. Bot. 31 (4): 739–763.
  25. Freund M., Graus D., Fleischmann A., Gilbert K.J., Lin Q., Renner T., Stigloher C., Albert V.A., Hedrich R., Fukushima K. 2022. The digestive systems of carnivorous plants. – Plant Physiol. 190 (1): 44–59. h ttps://doi.org/10.1093/plphys/kiac232
  26. Giuliani C., Maleci Bini L. 2008. Insight into the structure and chemistry of glandular trichomes of Labiatae, with emphasis on subfamily Lamioideae. – Plant Syst. Evol. 276: 199–208.
  27. Glauert A., Reid N. 1984. Fixation, dehydration and embedding of biological specimens. – Pract. Methods Electron Microsc. 3 (part 1).
  28. Huchelmann A., Boutry M., Hachez C. 2017. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest. – Plant Physiol. 175 (1): 6–22. https://doi.org/10.1104/pp.17.00727
  29. Ilyina L.P., Antsupova T.P. 2016. Tannins representatives family Geraniaceae of Buryatia. – International Research Journal. 5 (47): 73–74. h ttps://doi.org/10.18454/IRJ.2016.47.083
  30. Jeiter J., Hilger H.H., Smets E.F., Weigend M. 2017. The relationship between nectaries and floral architecture: a case study in Geraniaceae and Hypseocharitaceae. – Ann. Bot. 120 (5): 791–803. h ttps://doi.org/10.1093/aob/mcx101
  31. Jurkstiene V., Kondrotas A., Kevelaitis E. 2007. Immunostimulatory properties of bigroot geranium ( Geranium macrorrhizum L.) extract. – Medicina (Kaunas). 43: 60– 64. https://doi.org/10.3390/medicina43010008
  32. Karnovsky J.J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. – J. Cell Biol. 27 (1): 137–138.
  33. Ko K.N., Lee K.W., Lee S.E., Kim E.S. 2007. Development and ultrastructure of glandular trichomes in Pelargonium × fragrans ‘Mabel Grey’ (Geraniaceae). – J. Plant. Biol. 50 (3): 362–368. h ttps://doi.org/10.1007/BF03030668
  34. Kostina O., Muravnik L. 2014. Structure and chemical content of the trichomes in two Doronicum species (Asteraceae). – Modern phytomorphology 3rd international conference on plant morphology. 5: 167–171.
  35. Koteyeva N.K., Voznesenskaya E.V., Berim A., Gang D.R., Edwards G.E. 2023. Structural diversity in salt excreting glands and salinity tolerance in Oryza coarctata , Sporobolus anglicus and Urochondra setulosa . – Planta. 257 (1): 9.
  36. Kujur A., Kumar A., Yadav A., Prakash B. 2020. Antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated Pelargonium graveolens L. essential oil and its mode of action. – LWT. 130: 109619.
  37. Lange B.M. 2015. The evolution of plant secretory structures and emergence of terpenoid chemical diversity. – Annu. Rev. Plant Biol. 66: 139–159. h ttps://doi.org/10.1146/annurev-arplant-043014-114639
  38. Li D., Yao L. 2005. Structure and development of glandular trichomes in Pelargonium fragrans . – J. Shanghai Jiaotong Univ. (Agric. Sci.). 23: 217–222.
  39. Lis-Balchin M.T. 1996. A chemotaxonomic reappraisal of the Section Ciconium Pelargonium (Geraniaceae). – S. Afr. J. Bot. 62 (5): 277–279. h ttps://doi.org/10.1016/s0254-6299(15)30657-8
  40. Lis‐Balchin M., Roth G. 2000. Composition of the essential oils of Pelargonium odoratissimum , P. exstipulatum , and P. × fragrans (Geraniaceae) and their bioactivity. – Flavour Fragr. J. 15. h ttps://doi.org/10.1002/1099-1026(200011/12)15:6<391::AID-FFJ929>3.0.CO; 2-W
  41. Løe G., Toräng P., Gaudeul M., Ågren J. 2006. Trichome production and spatiotemporal variation in herbivory in the perennial herb Arabidopsis lyrata . – Oikos. 116 (1): 134–142. h ttps://doi.org/10.1111/j.2006.0030-1299.15022.x
  42. Maffei M.E. 2010. Sites of synthesis, biochemistry and functional role of plant volatiles. – S. Afr. J. Bot. 76 (4): 612–631. h ttps://doi.org/10.1016/j.sajb.2010.03.003
  43. Meek G.A. 1976. Practical electron microscopy for biologists.
  44. Mehra K.R., Kulkarni A.R. 1989. Floral trichomes in some members of Bignoniaceae. – Proc. Indian Acad. Sci. (Plant Sci.). 99 (2): 97–105.
  45. Mollenhauer H.H. 1964. Plastic embedding mixtures for use in electron microscopy. – Stain Technol. 39: 111.
  46. Moyo M., Koetle M.J., Van Staden J. 2014. Photoperiod and plant growth regulator combinations influence growth and physiological responses in Pelargonium sidoides DC. – In Vitro Cell Dev. Biol. Plant. 50 (4): 487–492.
  47. Muhlemann J.K., Klempien A., Dudareva N. 2014. Floral volatiles: from biosynthesis to function. – Plant Cell Environ. 37 (8): 1936–1949.
  48. Muravnik L.E., Mosina A.A., Zaporozhets N.L., Bhattacharya R., Saha S., Ghissing U., Mitra A. 2021. Glandular trichomes of the flowers and leaves in Millingtonia hortensis (Bignoniaceae). – Planta. 253:13. h ttps://doi.org/10.1007/s00425-020-03541-9
  49. Muravnik L.E., Shavarda A.L. 2011. Pericarp Peltate Trichomes in Pterocarya rhoifolia : Histochemistry, Ultrastructure, and Chemical Composition. – Int. J. Plant Sci. 172 (2): 159–172. h ttps://doi.org/10.1086/657646
  50. Radulović N.S., Stojković M.B., Mitić S.S., Randjelović P.J., Ilić I.R., Stojanović N.M., Stojanović-Radić Z.Z. 2012. Exploitation of the Antioxidant Potential of Geranium macrorrhizum (Geraniaceae): Hepatoprotective and Antimicrobial Activities. – Nat. Prod. Commun. 7 (12). h ttps://doi.org/10.1177/1934578x1200701218
  51. Romitelli I., Martins M.B.G. 2012. Comparison of leaf morphology and anatomy among Malva sylvestris ("gerânio-aromático"), Pelargonium graveolens ("falsa-malva") and Pelargonium odoratissimum ("gerânio-de-cheiro"). – Rev. Bras. Plantas Med. 15: 91–97. https://doi.org/10.1590/S1516-05722013000100013
  52. Schilmiller A.L., Last R.L., Pichersky E. 2008. Harnessing plant trichome biochemistry for the production of useful compounds. – Plant J. 54 (4): 702–711.
  53. Seker M.E., Ay E., Akta S.K.A., R H.U., Efe D. 2021. First determination of some phenolic compounds and antimicrobial activities of Geranium ibericum subsp. jubatum : A plant endemic to Turkey. – Turk. J. Chem. 45 (1): 60–70. h ttps://doi.org/10.3906/kim-2005-38
  54. Sharopov F., Ahmed M., Satyal P., Setzer W.N., Wink M. 2017. Antioxidant activity and cytotoxicity of methanol extracts of Geranium macrorrhizum and chemical composition of its essential oil. – Journal of Medicinally Active Plants. 5 (2): 53–58.
  55. Singh P., Srivastava B., Kumar A., Kumar R., Dubey N.K., Gupta R. 2008. Assessment of Pelargonium graveolens oil as plant-based antimicrobial and aflatoxin suppressor in food preservation. – J. Sci. Food Agric. 88 (14): 2421–2425. h ttps://doi.org/10.1002/jsfa.3342
  56. Song C., Ma L., Zhao J., Xue Z., Yan X., Hao C. 2022. Electrophysiological and Behavioral Responses of Plutella xylostella (Lepidoptera: Plutellidae) to Volatiles from a Non-host Plant, Geranium , Pelargonium × hortorum (Geraniaceae). – J. Agric. Food Chem. 70 (20): 5982–5992. h ttps://doi.org/10.1021/acs.jafc.1c08165
  57. Tahir S.S., Liz-Balchin M., Husain S.Z., Rajput M.T.M. 1994. SEM studies of trichomes types in representative species of the sect. Polyactium and sect. Ligularia in the genus Pelargonium L'Hérit. (Geraniaceae). – Pak. J. Bot. 26: 397–407.
  58. Tattini M., Gravano E., Pinelli P., Mulinacci N., Romani A. 2000. Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. – New Phytol. 148 (1): 69–77.
  59. Tsai T. 2016. The receptacular nectar tubes of Pelargonium (Geraniaceae): A study of development, length variation, and histology. Master's Theses. 950 p.
  60. Tsai T., Diggle P., Frye H., Jones C. 2017. Contrasting lengths of Pelargonium floral nectar tubes result from late differences in rate and duration of growth. – Ann. Bot. 121. h ttps://doi.org/10.1093/aob/mcx171
  61. Vassilyev A., Muravnik L. 1988. The ultrastructure of the digestive glands in Pinguicula vulgaris L. (Lentibulariaceae) relative to their function. I. The changes during maturation. – Ann. Bot. 62 (4): 329–341.
  62. Wagner G.J. 1991. Secreting glandular trichomes: more than just hairs. – Plant Physiol. 96 (3): 675– 679.
  63. Werker E. 2000. Trichome diversity and development. – Adv. Bot. Res. 31: 1–35. h ttps://doi.org/10.1016/S0065-2296(00)31005-9
  64. Werker E., Putievsky E., Ravid U., Dudai N., Katzir I. 1993. Glandular hairs and essential oil in developing leaves of Ocimum basilicum L. (Lamiaceae). – Ann. Bot. 71 (1): 43–50.
  65. Xiao K., Mao X., Lin Y. 2017. Trichome, a Functional Diversity Phenotype in Plant. – Mol. Biol. 6: 183. h ttps://doi.org/10.4172/2168-9547.1000183
  66. Yohana R., Chisulumi P.S., Kidima W., Tahghighi A., Maleki-Ravasan N., Kweka E.J. 2022. Anti-mosquito properties of Pelargonium roseum (Geraniaceae) and Juniperus virginiana (Cupressaceae) essential oils against dominant malaria vectors in Africa. – Malar. J. 21 (1): 1–15.
  67. Zambrana N., Bussmann R., Romero C. 2020. Pelargonium odoratissimum (L.) L’Hér. Pelargonium roseum Willd. Pelargonium zonale (L.) L’Hér. Geraniaceae. – In: Ethnobotany of the Andes. P. 1385–1390.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Leave and flower s с hemes in Pelargonium species : a – leaf, b – flower; 1 – leaf blade, 2 – petiole, 3 – pedicel, 4 – sepals, 5 – ovary, 6 – pistil, 7 – stamens, 8 – petals, 9 – nectar tube, 1 0 – nectary.

Download (112KB)
3. Fig. 2. Morphology and arrangement of trichomes on the leaf surface in Pelargonium : a – c , g – i – light microscopy, d – f , j – l – scanning electron microscopy. a , d , g , j – Pelargonium odoratissimum , b , e , h , k – P. exstipulatum , c , f , i , l – P. vitifolium . a–f – overview of glandular and simple hairs known as non-glandular trichomes (NGT) on the adaxial surface of the leaf blade; g – l – overview of glandular and non-glanular trichomes on the abaxial surface of the leaf blade. Scale bar – 100 µ m .

Download (774KB)
4. Fig. 3. Morphology and arrangement of trichomes on the pedicel and sepal surface in Pelargonium : a – c , g – i – light microscopy, d – f , j – l – scanning electron microscopy. a , d , g , j – Pelargonium odoratissimum , b , e , h , k – P. exstipulatum , c , f , i , l – P. vitifolium . a–f – overview of glandular and non-glandular trichomes on the pedicel; g – l – overview of glandular and non-glanular trichomes on the abaxial side of sepal. Scale bar – 100 µ m .

Download (679KB)
5. Fig. 4. Morpho l ogy and arrangement of trichomes on the ovary in Pelargonium odoratissimum : a – light microscopy, b – scanning electron microscopy. Glandular trichomes (arrows) are located between non-glandular trichomes. Scale bars – 100 µ m .

Download (316KB)
6. Fig. 5. Distribution density of glandular trichomes on leaves of different stages of differentiation (young leaf, leaf during elongation, mature leaf): a – adaxial surface of the leaf blade, b – abaxial surface of the leaf blade. X -axis – Pelargonium species, Y -axis – number of glandular trichomes in 1 mm 2 . Values are presented as means ± SE , n = 7–15.

Download (228KB)
7. Fig. 6. Morphology and anatomy of glandular trichomes of the 1 st type (according to scanning electron and light microscopy data): a – c – scanning electron microscopy, d – i – light microscopy. a , d , g – Pelargonium odoratissimum , b , e , h – P . exstipulatum , c , f , i – P . vitifolium . Scale bar – 20 µm .

Download (226KB)
8. Fig. 7. Morphology and anatomy of glandular trichomes of the 2 nd type (according to scanning electron and light microscopy data): a , c – scanning electron microscopy, b , d – light microscopy; a , b – Pelargonium odoratissimum ; c , d – P . exstipulatum . Scale bar – 20 µm.

Download (196KB)
9. Fig. 8. Morphology and anatomy of glandular trichomes of the 3 rd type (according to scanning electron and light microscopy data): a , b – scanning electron microscopy, c , d – light microscopy; a , c – Pelargonium exstipulatum , b , d – P. vitifolium . Scale bars : a , c , d – 10 µ m , b – 5 µ m .

Download (139KB)
10. Fig. 9. Morphology and anatomy of glandular trichomes of the 4 th type (according to scanning electron and light microscopy data): a , b – scanning electron microscopy, c – e – light microscopy; a , b , e – Pelargonium vitifolium , c – P. odoratissimum , d – P. exstipulatum ; a , b – glandular trichomes of the 4 th type compared with a glandular trichome of the 1 st type (*). Scale bar – 20 µm.

Download (215KB)
11. Fig. 10. Glandular trichomes on the ovary of Pelargonium odoratissimum : a – 2 nd type, b – 5 th type. Scale bar – 20 µ m .

Download (127KB)
12. Fig. 11. Length of glandular trichomes and diameter of the secretory cell in three Pelargonium species: a , b – leaf, c , d – pedicel, e , f – sepals, g , h – ovary. X -axis – Pelargonium species, Y -axis – length ( a , c , e , g ) and diameter ( b , d , f , h ), µm. Values are presented as means ± SE , n = 10–75.

Download (403KB)
13. Fig. 12. Percentage of different types of glandular trichomes on different organs: a – c – leaf, d–f – pedicel, g – i – sepal, j–l – ovary; a , d , g , j – Pelargonium odoratissimum , b , e , h , k – P . exstipulatum , c , f , i , l – P . vitifolium .

Download (276KB)

Copyright (c) 2024 Russian Academy of Sciences