Influence of the Phase Composition of the Fe/Biochar Catalysts on the Composition of Fischer–Tropsch Synthesis Products: The Lapidus Theory of Bifunctional Catalytic Centers

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Supported iron catalysts based on a carbon-containing material, biochar obtained by the hydrothermal carbonization of biopolymers (cellulose and lignin), were studied. The catalytic systems showed high activity in the Fischer–Tropsch synthesis. A composition of C5+ liquid products, uncharacteristic for ironcontaining catalysts, characterized by high isoalkane content (up to 55%) was recorded. This fact was discussed in the context of the theory of bifunctional centers proposed by A.L. Lapidus with coworkers. It was suggested that the active centers of the test catalysts can be considered bifunctional (a carbide phase and an oxide phase). A correlation between the Fischer–Tropsch synthesis data on the test catalysts and the data obtained by Lapidus and coworkers on cobalt-containing catalysts was shown.

Sobre autores

M. Ivantsov

Topchiev Institute of Petrochemical Synthesis (TIPS), Russian Academy of Sciences

Email: ivantsov@ips.ac.ru
Moscow, 119991 Russia

K. Krysanova

Topchiev Institute of Petrochemical Synthesis (TIPS), Russian Academy of Sciences

Email: m_kulikova@ips.ac.ru
Moscow, 119991 Russia

A. Grabchak

Topchiev Institute of Petrochemical Synthesis (TIPS), Russian Academy of Sciences

Email: ale.grabchak@ips.ac.ru
Moscow, 119991 Russia

M. Kulikova

Topchiev Institute of Petrochemical Synthesis (TIPS), Russian Academy of Sciences

Autor responsável pela correspondência
Email: m_kulikova@ips.ac.ru
Moscow, 119991 Russia

Bibliografia

  1. Luque R., de la Osa A.R., Campelo J.M., Romero A.A., Valverde J.L., Sanchez P. // Energy Environ Sci. 2012. V. 5. № 1. P. 5186.
  2. Roddy D.J. // Interface Focus. 2013. V. 3. № 1. P. 20120038.
  3. Aasberg-Petersen K., Christensen T.S., Dybkjaer I., Sehested J., Østberg M., Coertzen R.M., Keyser M.J., Steynberg A.P. // Stud. Surf. Sci. Catal. 2004. V. 152. P. 258.
  4. Lavoie J.J. // Rev. des Sci. Relig. 2014. V. 88. № 1. P. 1.
  5. Najera M., Solunke R., Gardner T., Veser G. // Chem. Eng. Res. Des. 2011. V. 89. № 9. P. 1533.
  6. Sumrunronnasak S., Tantayanon S., Kiatgamolchai S., Sukonket T. // Int. J. Hydrogen Energy. 2016. V. 41. № 4. P. 2621.
  7. Buelens L.C., Galvita V.V., Poelman H., Detavernier C., Marin G.B. // Science. 2016. V. 354. № 6311. P. 449.
  8. Park J.Y., Lee Y.J., Khanna P.K., Jun K.W., Bae J.W., Kim Y.H. // J. Mol. Catal. A Chem. 2010. V. 323. № 1–2. P. 84.
  9. Jahangiri H., Bennett J., Mahjoubi P., Wilson K., Gu S. // Catal. Sci. Technol. 2014. V. 4. № 8. P. 2210.
  10. Van Der Laan G.P., Beenackers A.A.C.M. // Catal. Rev. 1999. V. 41. № 3–4. P. 255.
  11. James O.O., Chowdhury B., Mesubi M.A., Maity S. // RSC Adv. 2012. V. 2. № 19. P. 7347.
  12. Gholami Z., Gholami F., Tišler Z., Hubáček J., Tomas M., Bačiak M., Vakili M. // Catalysts. 2022. V. 12. № 2. P. 174.
  13. Лапидус А.Л., Крылова А.Ю. // Рос. жим. журн. 2000. Т. 44. № 1. С. 43.
  14. Крылова А.Ю., Ием Чонг Хоанг, Лапидус А.Л. // Нефтехимия. 1983. Т. 23. № 6. С. 779.
  15. Ием Чонг Хоанг, Лапидус А.Л., Крылова А.Ю., Кондратьев Л.Т., Миначев Х.М. // ХТТ. 1983. № 6. С. 7.
  16. Лапидус А.Л., Крылова А.Ю. // Успехи химии. 1998. Т. 67. № 11. С. 1032.
  17. Лапидус А.Л., Елисеев О.Л., Волков А.С., Будцов В.С., Гущин В.В., Кули Т.Е., Давыдов П.Е. // ХТТ. 2007. № 3. С. 16.
  18. Wang M., Han Y., Liu S., Liu Z., An D., Zhang Z., Cheng K., Zhang Q., Wang Y. // Chinese J. Catal. 2021. V. 42. № 12. P. 2197.
  19. Ding Y., Jiao F., Pan X., Bao X. // J. Energy Chem. 2022. V. 73. P. 416.
  20. Zhao N., Chen Y., Li X., Zhang J., Dai L., Jiang X., Liu C., Li Z. // Int. J. Hydrogen Energy. 2022. V. 47. № 35. P. 15706.
  21. Крылова А.Ю., Куликова М.В., Лапидус А.Л. // ХТТ. 2014. № 4. С. 18.
  22. Valero-Romero M.J., Rodríguez-Cano M.Á., Palomo J., Rodríguez-Mirasol J., Cordero T. // Front Mater. 2021. V. 7.
  23. Wang A., Luo M., Lü B., Song Y., Li M., Yang Z. // Mol. Catal. 2021. V. 509. P. 111601.
  24. Teimouri Z., Abatzoglou N., Dalai A.K. // Renew Energy. 2023. V. 202. P. 1096.
  25. Tang Z.E., Lim S., Pang Y.L., Shuit S.H., Ong H.C. // Renew Energy. 2020. V. 158. P. 91.
  26. Kulikova M.V., Zemtsov L.M., Sagitov S.A., Efimov M.N., Krylova A.Y., Karpacheva G.P., Khadzhiev S.N. // Solid Fuel Chem. 2014. V. 48. № 2. P. 105. [Химия твердого топлива, 2014. № 2. С. 32. https://doi.org/10.7868/S0023117714020078].https://doi.org/10.3103/s0361521914020074
  27. Hu B., Wang K., Wu L., Yu S.H., Antonietti M., Titirici M.M. // Adv Mater. 2010. V. 22. № 7. P. 813.
  28. Ramos R., Abdelkader-Fernández V.K., Matos R., Peixoto A.F., Fernandes D.M. // Catalysts. 2022. V. 12. № 2. P. 207.
  29. Ivantsov M.I., Krysanova K.O., Grabchak A.A., Kulikova M.V. // Eurasian Chem J. 2022. V. 24. № 4. P 303.
  30. Bennett J.A., Parlett C.M.A., Isaacs M.A., Durndell L.J., Olivi L., Lee A.F., Wilson K. // Chem. Cat. Chem. 2017. V. 9. № 9. P. 1648.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (225KB)
3.

Baixar (46KB)
4.

Baixar (372KB)

Declaração de direitos autorais © М.И. Иванцов, К.О. Крысанова, А.А. Грабчак, М.В. Куликова, 2023