Assessing the influence of xanthene dyes on the physical properties of lipid membranes using the molecular dynamics simulation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Objective: The correct choice of dyes, especially those targeting cell membranes, is a primary task for successful scientific research. In this work, the effect of xanthene dyes, fluorescein, erythrosine, eosin Y and rose bengal, on the physical properties of model lipid membranes was studied using molecular dynamics simulation.

Methods: Molecular dynamics simulation.

Results and discussion: It was found that xanthene dyes increase the area per lipid, the effect increases in the series fluorescein ≈ eosin Y < erythrosine ≤ rose bengal. Calculation of the packing parameter of the phospholipid molecule “tails” shows that fluorescein, erythrosine and eosin Y have a disordering effect on membranes, while rose bengal has practically no effect on this parameter. Evaluation of the change in the dipole potential of the phospholipid membrane in the presence of dyes shows that their ability to reduce this value increases in the series fluorescein ≈ eosin Y ≈ erythrosine < rose bengal.

Conclusions: Comparison of the results of molecular dynamics simulation with electrophysiological data and the results of differential scanning microcalorimetry has revealed a number of discrepancies, the reasons for which are discussed.

Texto integral

Acesso é fechado

Sobre autores

А. Malykhina

Institute of Cytology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: efimova@incras.ru
Rússia, St. Petersburg

O. Ostroumova

Institute of Cytology, Russian Academy of Sciences

Email: efimova@incras.ru
Rússia, St. Petersburg

S. Efimova

Institute of Cytology, Russian Academy of Sciences

Email: efimova@incras.ru
Rússia, St. Petersburg

Bibliografia

  1. Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E. 2015. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X. V. 1—2. P. 19. https://doi.org/10.1016/j.softx.2015.06.001
  2. Banks J. G., Board R. G., Carter J., Dodge A. D. 1985. The cytotoxic and photodynamic inactivation of micro-organisms by Rose Bengal. J. Appl. Bacteriol. V. 58. P. 3910—400. https://doi.org/10.1111/j.1365-2672.1985.tb01478.x
  3. Bernetti M., Bussi G. 2020. Pressure control using stochastic cell rescaling. J. Chem. Phys. V. 153. Art. ID: 114107. https://doi.org/10.1063/5.0020514
  4. Bhat M., Acharya S., Prasad K. V.V., Kulkarni R., Bhat A., Bhat D. 2017. Effectiveness of erythrosine-mediated photodynamic antimicrobial chemotherapy on dental plaque aerobic microorganisms: a randomized controlled trial. J. Indian Soc. Periodontol. V. 21. P. 210. https://doi.org/10.4103/jisp.jisp_157_17
  5. Buck S. T.G., Bettanin F., Orestes E., Homem-de-Mello P., Imasato H., Viana R. B., da Silva A. B.F. 2017. Photodynamic efficiency of xanthene dyes and their phototoxicity against a carcinoma cell line: a computational and experimental study. J. Chem. V. 2017. Article ID: 7365263. https://doi.org/10.1155/2017/7365263
  6. Bussi G., Donadio D., Parrinello M. 2007. Canonical sampling through velocity rescaling. J. Chem. Phys. V. 126. Art. ID: 014101. https://doi.org/10.1063/1.2408420
  7. Calori I. R., Pellosi D. S., Vanzin D., Cesar G. B., Pereira P. C.S., Politi M. J., Hioka N., Caetano W. 2016. Distribution of xanthene dyes in DPPC vesicles: rationally accounting for drug partitioning using a membrane model. J. Braz. Chem. Soc. V. 27. P. 1938. https://doi.org/10.5935/0103-5053.20160079
  8. Chaudhuri S., Sardar S., Bagchi D., Dutta S., Debnath S., Saha P., Lemmens P., Pal S. K. 2016. Photoinduced dynamics and toxicity of a cancer drug in proximity of inorganic nanoparticles under visible light. Chemphyschem. V. 17. P. 270. https://doi.org/10.1002/cphc.201500905
  9. Clarke R. J. 2015. Dipole-potential-mediated effects on ion pump kinetics. Biophys. J. V. 109. P. 1513. https://doi.org/10.1016/j.bpj.2015.08.022
  10. Darden T., York D., Pedersen L. 1993. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. V. 98. P. 10089. https://doi.org/10.1063/1.464397
  11. Efimova S. S., Ostroumova O. S. 2012. Effect of dipole modifiers on the magnitude of the dipole potential of sterol-containing bilayers. Langmuir. V. 28. P. 9908. https://doi.org/10.1021/la301653s
  12. Efimova S. S., Schagina L. V., Ostroumova O. S. 2014. The influence of halogen derivatives of thyronine and fluorescein on the dipole potential of phospholipid membranes. J. Membr. Biol. V. 247. P. 739. https://doi.org/10.1007/s00232-014-9703-7
  13. Efimova S. S., Zakharova A. A., Ismagilov A. A., Schagina L. V., Malev V. V., Bashkirov P. V., Ostroumova O. S. 2018. Lipid-mediated regulation of pore-forming activity of syringomycin E by thyroid hormones and xanthene dyes. Biochim. Biophys. Acta Biomembr. V. 1860. P. 691. https://doi.org/10.1016/j.bbamem.2017.12.010
  14. Guixà-González R., Rodriguez-Espigares I., Ramírez-Anguita J.M., Carrió-Gaspar P., Martinez-Seara H., Giorgino T., Selent J. 2014. MEMBPLUGIN: studying membrane complexity in VMD. Bioinformatics. V. 30. P. 1478. https://doi.org/10.1093/bioinformatics/btu037
  15. Humphrey W., Dalke A., Schulten K. 1996. VMD: visual molecular dynamics. J. Mol. Graph. V. 14. P. 33—38. https://doi.org/10.1016/0263-7855(96)00018-5
  16. Jo S., Lim J. B., Klauda J. B., Im W. 2009. CHARMM-GUI Membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. V. 97. P. 50. https://doi.org/10.1016/j.bpj.2009.04.013
  17. Kotova E. A., Rokitskaya T. I., Antonenko Y. N. 2000. Two phases of gramicidin photoinactivation in bilayer lipid membranes in the presence of a photosensitizer. Membr. Cell Biol. V. 13. P. 411.
  18. Kučerka N., Nieh M. P., Katsaras J. 2011. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta. V. 1808. P. 2761. https://doi.org/10.1016/j.bbamem.2011.07.022
  19. Lee J., Cheng X., Swails J. M., Yeom M. S., Eastman P. K., Lemkul J. A., Wei S., Buckner J., Jeong J. C., Qi Y., Jo S., Pande V. S., Case D. A., Brooks C. L. 3rd, MacKerell A. D. Jr., Klauda J. B., Im W. 2016. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. V. 12. P. 405. https://doi.org/10.1021/acs.jctc.5b00935
  20. Qin J., Kunda N., Qiao G., Calata J. F., Pardiwala K., Prabhakar B. S., Maker A. V. 2017. Colon cancer cell treatment with rose bengal generates a protective immune response via immunogenic cell death. Cell Death. Dis. V. 8. Art. ID: e2584. https://doi.org/ 10.1038/cddis.2016.473
  21. Stenberg T. 1964. Studies of the liver function in experimental burns. IV. The radioiodine Rose Bengal (rirb) test in the burned rabbit. Acta Chir. Scand. V. 127. P. 367.
  22. Soifer M., Azar N. S., Blanco R., Mousa H. M., Ghalibafan S., Tovar A., Mettu P. S., Allingham M. J., Cousins S. W., Sabater A. L., Perez V. L. 2023. Fluorescein CorneoGraphy (FCG): use of a repurposed fluorescein imaging technique to objectively standardize corneal staining. Ocul. Surf. V. 27. P. 77—79. https://doi.org/10.1016/j.jtos.2022.11.010
  23. Vanommeslaeghe K., MacKerell A. D. Jr. 2012. Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. V. 52. P. 3144. https://doi.org/10.1021/ci300363c

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Effect of xanthene dyes on the area per lipid molecule (APL). Differences between compounds were assessed using one-way analysis of variance (ANOVA) followed by Tukey's mean difference comparison with a significance level of p ≤ 0.05.

Baixar (121KB)
3. Fig. 2. Order parameter for the acyl tails of DPPC (SCD) in the absence (control, black line) and presence of fluorescein (red line), erythrosine (blue line), eosin Y (green line) and rose bengal (orange line) at a lipid:dye ratio of 10:1 at 25 °C. Acyl chains at the sn-1 and sn-2 positions are indicated by solid and dotted lines, respectively.

Baixar (108KB)
4. Fig. 3. Visualization of xanthene dye localization in DPPC membrane at a lipid/dye ratio of 10:1. Interacting molecules are highlighted in color: fluorescein — red, erythrosine — blue, eosin Y — green, and rose bengal — orange. Non-interacting dye molecules are shown in gray.

Baixar (205KB)
5. Table 1. Fig. 1

Baixar (15KB)
6. Table 1. Fig. 2

Baixar (17KB)
7. Table 1. Fig. 3

Baixar (17KB)
8. Table 1. Fig. 4

Baixar (18KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025