Assessing the influence of xanthene dyes on the physical properties of lipid membranes using the molecular dynamics simulation
- Autores: Malykhina А.I.1, Ostroumova O.S.1, Efimova S.S.1
-
Afiliações:
- Institute of Cytology, Russian Academy of Sciences
- Edição: Volume 67, Nº 2 (2025)
- Páginas: 104-110
- Seção: Articles
- URL: https://rjmseer.com/0041-3771/article/view/685009
- DOI: https://doi.org/10.31857/S0041377125020046
- EDN: https://elibrary.ru/FVKLVR
- ID: 685009
Citar
Resumo
Objective: The correct choice of dyes, especially those targeting cell membranes, is a primary task for successful scientific research. In this work, the effect of xanthene dyes, fluorescein, erythrosine, eosin Y and rose bengal, on the physical properties of model lipid membranes was studied using molecular dynamics simulation.
Methods: Molecular dynamics simulation.
Results and discussion: It was found that xanthene dyes increase the area per lipid, the effect increases in the series fluorescein ≈ eosin Y < erythrosine ≤ rose bengal. Calculation of the packing parameter of the phospholipid molecule “tails” shows that fluorescein, erythrosine and eosin Y have a disordering effect on membranes, while rose bengal has practically no effect on this parameter. Evaluation of the change in the dipole potential of the phospholipid membrane in the presence of dyes shows that their ability to reduce this value increases in the series fluorescein ≈ eosin Y ≈ erythrosine < rose bengal.
Conclusions: Comparison of the results of molecular dynamics simulation with electrophysiological data and the results of differential scanning microcalorimetry has revealed a number of discrepancies, the reasons for which are discussed.
Palavras-chave
Texto integral

Sobre autores
А. Malykhina
Institute of Cytology, Russian Academy of Sciences
Autor responsável pela correspondência
Email: efimova@incras.ru
Rússia, St. Petersburg
O. Ostroumova
Institute of Cytology, Russian Academy of Sciences
Email: efimova@incras.ru
Rússia, St. Petersburg
S. Efimova
Institute of Cytology, Russian Academy of Sciences
Email: efimova@incras.ru
Rússia, St. Petersburg
Bibliografia
- Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E. 2015. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X. V. 1—2. P. 19. https://doi.org/10.1016/j.softx.2015.06.001
- Banks J. G., Board R. G., Carter J., Dodge A. D. 1985. The cytotoxic and photodynamic inactivation of micro-organisms by Rose Bengal. J. Appl. Bacteriol. V. 58. P. 3910—400. https://doi.org/10.1111/j.1365-2672.1985.tb01478.x
- Bernetti M., Bussi G. 2020. Pressure control using stochastic cell rescaling. J. Chem. Phys. V. 153. Art. ID: 114107. https://doi.org/10.1063/5.0020514
- Bhat M., Acharya S., Prasad K. V.V., Kulkarni R., Bhat A., Bhat D. 2017. Effectiveness of erythrosine-mediated photodynamic antimicrobial chemotherapy on dental plaque aerobic microorganisms: a randomized controlled trial. J. Indian Soc. Periodontol. V. 21. P. 210. https://doi.org/10.4103/jisp.jisp_157_17
- Buck S. T.G., Bettanin F., Orestes E., Homem-de-Mello P., Imasato H., Viana R. B., da Silva A. B.F. 2017. Photodynamic efficiency of xanthene dyes and their phototoxicity against a carcinoma cell line: a computational and experimental study. J. Chem. V. 2017. Article ID: 7365263. https://doi.org/10.1155/2017/7365263
- Bussi G., Donadio D., Parrinello M. 2007. Canonical sampling through velocity rescaling. J. Chem. Phys. V. 126. Art. ID: 014101. https://doi.org/10.1063/1.2408420
- Calori I. R., Pellosi D. S., Vanzin D., Cesar G. B., Pereira P. C.S., Politi M. J., Hioka N., Caetano W. 2016. Distribution of xanthene dyes in DPPC vesicles: rationally accounting for drug partitioning using a membrane model. J. Braz. Chem. Soc. V. 27. P. 1938. https://doi.org/10.5935/0103-5053.20160079
- Chaudhuri S., Sardar S., Bagchi D., Dutta S., Debnath S., Saha P., Lemmens P., Pal S. K. 2016. Photoinduced dynamics and toxicity of a cancer drug in proximity of inorganic nanoparticles under visible light. Chemphyschem. V. 17. P. 270. https://doi.org/10.1002/cphc.201500905
- Clarke R. J. 2015. Dipole-potential-mediated effects on ion pump kinetics. Biophys. J. V. 109. P. 1513. https://doi.org/10.1016/j.bpj.2015.08.022
- Darden T., York D., Pedersen L. 1993. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. V. 98. P. 10089. https://doi.org/10.1063/1.464397
- Efimova S. S., Ostroumova O. S. 2012. Effect of dipole modifiers on the magnitude of the dipole potential of sterol-containing bilayers. Langmuir. V. 28. P. 9908. https://doi.org/10.1021/la301653s
- Efimova S. S., Schagina L. V., Ostroumova O. S. 2014. The influence of halogen derivatives of thyronine and fluorescein on the dipole potential of phospholipid membranes. J. Membr. Biol. V. 247. P. 739. https://doi.org/10.1007/s00232-014-9703-7
- Efimova S. S., Zakharova A. A., Ismagilov A. A., Schagina L. V., Malev V. V., Bashkirov P. V., Ostroumova O. S. 2018. Lipid-mediated regulation of pore-forming activity of syringomycin E by thyroid hormones and xanthene dyes. Biochim. Biophys. Acta Biomembr. V. 1860. P. 691. https://doi.org/10.1016/j.bbamem.2017.12.010
- Guixà-González R., Rodriguez-Espigares I., Ramírez-Anguita J.M., Carrió-Gaspar P., Martinez-Seara H., Giorgino T., Selent J. 2014. MEMBPLUGIN: studying membrane complexity in VMD. Bioinformatics. V. 30. P. 1478. https://doi.org/10.1093/bioinformatics/btu037
- Humphrey W., Dalke A., Schulten K. 1996. VMD: visual molecular dynamics. J. Mol. Graph. V. 14. P. 33—38. https://doi.org/10.1016/0263-7855(96)00018-5
- Jo S., Lim J. B., Klauda J. B., Im W. 2009. CHARMM-GUI Membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. V. 97. P. 50. https://doi.org/10.1016/j.bpj.2009.04.013
- Kotova E. A., Rokitskaya T. I., Antonenko Y. N. 2000. Two phases of gramicidin photoinactivation in bilayer lipid membranes in the presence of a photosensitizer. Membr. Cell Biol. V. 13. P. 411.
- Kučerka N., Nieh M. P., Katsaras J. 2011. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta. V. 1808. P. 2761. https://doi.org/10.1016/j.bbamem.2011.07.022
- Lee J., Cheng X., Swails J. M., Yeom M. S., Eastman P. K., Lemkul J. A., Wei S., Buckner J., Jeong J. C., Qi Y., Jo S., Pande V. S., Case D. A., Brooks C. L. 3rd, MacKerell A. D. Jr., Klauda J. B., Im W. 2016. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. V. 12. P. 405. https://doi.org/10.1021/acs.jctc.5b00935
- Qin J., Kunda N., Qiao G., Calata J. F., Pardiwala K., Prabhakar B. S., Maker A. V. 2017. Colon cancer cell treatment with rose bengal generates a protective immune response via immunogenic cell death. Cell Death. Dis. V. 8. Art. ID: e2584. https://doi.org/ 10.1038/cddis.2016.473
- Stenberg T. 1964. Studies of the liver function in experimental burns. IV. The radioiodine Rose Bengal (rirb) test in the burned rabbit. Acta Chir. Scand. V. 127. P. 367.
- Soifer M., Azar N. S., Blanco R., Mousa H. M., Ghalibafan S., Tovar A., Mettu P. S., Allingham M. J., Cousins S. W., Sabater A. L., Perez V. L. 2023. Fluorescein CorneoGraphy (FCG): use of a repurposed fluorescein imaging technique to objectively standardize corneal staining. Ocul. Surf. V. 27. P. 77—79. https://doi.org/10.1016/j.jtos.2022.11.010
- Vanommeslaeghe K., MacKerell A. D. Jr. 2012. Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. V. 52. P. 3144. https://doi.org/10.1021/ci300363c
Arquivos suplementares
