In ovo — isolation of primordial germ cells from embryonic blood of gene pool breeds of chickens
- Authors: Peglivanyan G.K.1, Larkina T.A.1, Reinbach N.R.1, Dysin A.P.1, Gabova A.V.1, Polteva Е.A.1, Ryabova А.Е.1, Azovtseva A.I.1
-
Affiliations:
- Branch of the Ernst Federal Science Center for Animal Husbandry (RRIFAGB)
- Issue: Vol 67, No 2 (2025)
- Pages: 111-118
- Section: Articles
- URL: https://rjmseer.com/0041-3771/article/view/685022
- DOI: https://doi.org/10.31857/S0041377125020057
- EDN: https://elibrary.ru/FVKVDB
- ID: 685022
Cite item
Abstract
The article presents a new method (in ovo — inside the egg) for isolating primordial germ cells (PGC) from embryonic blood of gene pool chicken breeds, which is of great importance for preserving the genetic resources of birds and creating new innovative tools in the field of biotechnology. Despite the key role of PGC in the targeted modification of the genome, there are significant difficulties with the efficiency of their isolation. To analyze the efficiency of the in ovo method, experiments were conducted on collecting blood samples from 192 chicken embryos of various breeds, as well as subsequent cultivation of PGC and cell counting. It was found that the efficiency of sampling depends on the egg weight and breed. A high efficiency rate was observed in the Chinese Silkie breed (89.5 %), with an influence strength of η2 = 98 %, p-value <0.004. Analysis of PGC cultivation data showed an increase in the concentration of living cells and their survival by the 20th day. The highest survival rates were observed in the Chinese Silkie breed (69.1±2.56 %), and the Tsarskoye Selo (68.78±3.39 %) and Rhode Island (67.9±2.52 %) chicken breeds also had high rates. The results confirmed the importance of the in ovo method for optimizing the process of isolating PGCs from 4-day chicken embryos to increase the number of cells during further cultivation.
Full Text

About the authors
G. K. Peglivanyan
Branch of the Ernst Federal Science Center for Animal Husbandry (RRIFAGB)
Author for correspondence.
Email: Peglivanian_grig@mail.ru
Russian Research Institute of Farm Animal Genetics and Breeding
Russian Federation, St. Petersburg, PushkinT. A. Larkina
Branch of the Ernst Federal Science Center for Animal Husbandry (RRIFAGB)
Email: Peglivanian_grig@mail.ru
Russian Research Institute of Farm Animal Genetics and Breeding
Russian Federation, St. Petersburg, PushkinN. R. Reinbach
Branch of the Ernst Federal Science Center for Animal Husbandry (RRIFAGB)
Email: Peglivanian_grig@mail.ru
Russian Research Institute of Farm Animal Genetics and Breeding
Russian Federation, St. Petersburg, PushkinA. P. Dysin
Branch of the Ernst Federal Science Center for Animal Husbandry (RRIFAGB)
Email: Peglivanian_grig@mail.ru
Russian Research Institute of Farm Animal Genetics and Breeding
Russian Federation, St. Petersburg, PushkinA. V. Gabova
Branch of the Ernst Federal Science Center for Animal Husbandry (RRIFAGB)
Email: Peglivanian_grig@mail.ru
Russian Research Institute of Farm Animal Genetics and Breeding
Russian Federation, St. Petersburg, PushkinЕ. A. Polteva
Branch of the Ernst Federal Science Center for Animal Husbandry (RRIFAGB)
Email: Peglivanian_grig@mail.ru
Russian Research Institute of Farm Animal Genetics and Breeding
Russian Federation, St. Petersburg, PushkinА. Е. Ryabova
Branch of the Ernst Federal Science Center for Animal Husbandry (RRIFAGB)
Email: Peglivanian_grig@mail.ru
Russian Research Institute of Farm Animal Genetics and Breeding
Russian Federation, St. Petersburg, PushkinA. I. Azovtseva
Branch of the Ernst Federal Science Center for Animal Husbandry (RRIFAGB)
Email: Peglivanian_grig@mail.ru
Russian Research Institute of Farm Animal Genetics and Breeding
Russian Federation, St. Petersburg, PushkinReferences
- Баркова О. Ю., Ларкина Т. А., Крутикова А. А., Пегливанян Г. К. 2023. Идентификация примордиальных зародышевых клеток (РGС) кур пушкинской породы с помощью ПЦР в реальном времени. Птицеводство. № 1. С. 10—15 (Barkova O. Y., Larkina T. A., Krutikova A. A., Peglivanyan G. K. 2023. Identification of primordial germ cells (PGC) of Pushkin breed chickens by real-time PCR. Poultry Science. № 1. P. 10.) https:// doi: 10.33845/0033-3239-2022-72-1-10-15
- Крутикова А. А., Пегливанян Г. К. 2025. Способ получения примордиальных половых клеток птиц. Патент № 2832977 C1, Российская Федерация, МПК C12N5/07, C12N5/10, C12N5/16. (Krutikova A. A., Peglivanyan G. K. 2025. Method of obtaining primordial germ cells of birds. Patent No. 2832977 C1б, Russian Federation, IPC C12N5/07, C12N5/10, C12N5/16.)
- Пегливанян Г. К., Ларкина Т. А., Рейнбах Н. Р., Полтева Е. А., Дысин А. П., Рябова А. Е., Азовцева А. И., Крутикова А. А. 2024. Особенности криоконсервации и декриоконсервации примордиальных половых клеток пушкинской породы кур. Биотехнология. 2024. Т. 40. № 5. С. 29. (Peglivanyan G. K., Larkina T. A., Reynbach N. R., Polteva E. A., Dysin A. P., Ryabova A. E., Azovtseva A. I., Krutikova A. A. 2024. Features of cryopreservation and decryoconservation of primordial germ cells of the Pushkin chicken breed. Biotechnology. 2024. V. 40, no. 5. P. 29.) https:// doi.org/10.56304/S0234275824050090
- Challagulla A., Jenkins K. A., O’Neil T.E., Morris K. R., Wise T. G., Tizard M. L., Bean A. G.D., Schat K. A., Doran T. J. 2023. Germline engineering of the chicken genome using CRISPR/Cas9 by in vivo transfection of PGCs. Animal Biotechnol. V. 34. P. 775—784. https://doi.org/10.1080/10495398.2020.1789869
- Chojnacka-Puchta L., Sawicka D., Lakota P., Plucienniczak G., Bednarczyk M., Plucienniczak A. 2015. Obtaining chicken primordial germ cells used for gene transfer: in vitro and in vivo results. J. Applied Genetics. V. 56. P. 493. https://doi.org/10.1007/s13353-015-0276-7
- Fujimoto T., Ukeshima A., Kiyofuji R. 1976. The origin, migration and morphology of the primordial germ cells in the chick embryo. Anat. Record. V. 185. P. 139. https://doi.org/1002/ar.1091850203
- Han J. Y., Park Y. H. 2018. Primordial germ cell-mediated transgenesis and genome editing in birds. J. Animal Sci. Biotechnol. V. 9. P. 1. https://doi.org/10.1186/s40104-018-0234-4
- Han J. Y., Park T. S., Hong Y. H., Jeong D. K., Kim J. N., Kim K. D., Lim J. M. 2002. Production of germline chimeras by transfer of chicken gonadal primordial germ cells maintained in vitro for an extended period. Theriogenology. V. 58. P. 1531. https://doi.org/10.1016/S0093-691X(02)01061-0
- Houston D. W., King M. L. 2000. A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development. V. 127. Art. ID: 447. https://doi.org/10.1242/dev.127.3.447
- Kang S. J., Choi J. W., Park K. J., Lee Y. M., Kim T. M., Sohn S. H., Han J. Y. 2009. Development of a pheasant interspecies primordial germ cell transfer to chicken embryo: Effect of donor cell sex on chimeric semen production. Theriogenology. 2009. V. 72. P. 519. https://doi.org/10.1016/j.2009.04.007
- Kong L., Qiu L., Guo Q., Chen Y., Zhang X., Chen B., Chang G. 2018. Long-term in vitro culture and preliminary establishment of chicken primordial germ cell lines. PLoS One. V. 13. Art. ID: e0196459. https://doi.org/10.1371/0196459.
- Lee H. C., Choi H. J., Lee H. G., Lim J. M., Ono T., Han J. Y. 2016. DAZL expression explains origin and central formation of primordial germ cells in chickens. Stem Cells Devel. V. 25. P. 68—79. https://doi.org/10.1089/scd.2015.0208
- Macdonald J., Glover J. D., Taylor L., Sang H. M., McGrew M.J. 2010. Characterisation and germline transmission of cultured avian primordial germ cells. PloS one. V. 5. Art. ID: e15518. https://doi.org/10.1371/0015518
- Maegawa S., Yasuda K., Inoue K. 1999. Maternal mRNA localization of zebrafish DAZ-like gene. Mech. Devel. V. 81. P. 223. https://doi.org/10.1016/S0925-4773(98)00242-1
- Mathan, Zaib G., Jin K., Zuo Q., Habib M., Zhang Y., Li B. 2023. Formation, application, and significance of chicken primordial germ cells: Rev. Animals. V. 13. Art. ID: 1096. https://doi.org/10.3390/13061096
- Ono T. Exo ovo culture of avian embryos. 2000. Dev. Biol. Protocols. V. I. P. 39. https://doi.org/10.1385/1-59259-685-1:39
- Perry M. M. 1988. A complete culture system for the chick embryo. Nature. V. 331. P. 70.
- Petitte J. N., Mozdziak P. E. 2014. Production of transgenic poultry. In: Transgenic Animal Technol.: Elsevier. P. 335. https://doi.org/10.1016/B978-0-12-410490-7.00012-8
- Rengaraj D., Won S., Han J. W., Yoo D., Kim H., Han J. Y. 2020. Whole-transcriptome sequencing-based analysis of DAZL and its interacting genes during germ cells specification and zygotic genome activation in chickens. Int. J. Mol. Sci. V. 21. Art. ID: 8170. https://doi.org/10.3390/ijms21218170
- Tsunekawa N., Naito M., Sakai Y., Nishida T., Noce T. 2000. Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development. V. 127. P. 2741. https://doi.org/10.1242/dev.127.12.2741
- Zhang X., Xian R., Fu Y., Dai Y., Peng R. 2023. A novel, efficient method to isolate chicken primordial germ cells from embryonic blood using cell culture inserts. Animals, V. 13. Art. ID: 3805. https://doi.org/10.3390/13243805
- Yasuda Y., Tajima A., Fujimoto T., Kuwana T. 1992. A method to obtain avian germ-line chimaeras using isolated primordial germ cells. J. Reprod. Fert. V. 96. P. 521. https://doi.org/10.1530/jrf.0.0960521
- Whyte J., Glover J. D., Woodcock M., Brzeszczynska J., Taylor L., Sherman A., Kaiser P., McGrew M.J. 2015. FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Reports. V. 5. P. 1171. 10.1016/.2015.10.008' target='_blank'>https://doi: 10.1016/.2015.10.008
Supplementary files
