LOCALIZATION OF MOVABLE SINGULARITIES OF THE BLASIUS EQUATION
- Authors: Varin V.P1
-
Affiliations:
- Keldysh Institute of Applied Mathematics, RAS
- Issue: Vol 65, No 10 (2025)
- Pages: 1649-1661
- Section: Ordinary differential equations
- URL: https://rjmseer.com/0044-4669/article/view/695946
- DOI: https://doi.org/10.31857/S0044466925100037
- ID: 695946
Cite item
Abstract
We study movable singularities of the Blasius equation in the complex plane. Numerical algorithms of their localization are given that allow to find singularities with high accuracy. All these singularities are equivalent and may be represented by one of them. We obtain an asymptotic expansion in the neighborhood of the singularity in explicit form and compute its coefficients. This power-logarithmic expansion is shown to be convergent and giving a local parametrization of the Riemann surface of the Blasius function.
About the authors
V. P Varin
Keldysh Institute of Applied Mathematics, RAS
Email: varin@keldysh.ru
Moscow, Russia
References
- Blasius H. Grenzschichten in Flüssigkeiten mit kleiner Reibung // Z. Math. Phys. V. 56. P. 1—37 (1908); reprint: The boundary layers in fluids with little friction // National Advisory Committee for Aeronautics, Tech. Memo. 1256. (Washington 1950).
- Töpfer C. Bemerkungen zu dem Aufsatz von H. Blasius "Grenzschichten in Flüssigkeiten mit kleiner Reibung" // Z. Math. Phys. 1912. V. 60. P. 397—398.
- Weyl H. Concerning the differential equations of some boundary-layer problems // Proc. Nat. Acad. Sci. 1941. V. 27. P. 578–583.
- Boyd J.P. The Blasius function in the complex plane // Experiment. Math. 1999. V. 8. P. 381–394.
- Boyd J.P. Pade approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain // Computers and Physics. 1997. V. 11(3). P. 299–303.
- Boyd J.P. The Blasius Function: Computations Before Computers, the Value of Tricks, Undergraduate Projects, and Open Research Problems // SIAM REVIEW. 2008. V. 50. No. 4. P. 791–804.
- Varin V.P. Flat Expansions and Their Applications // Comp. Math. and Math. Phys. 2015. V. 55. № 5. P. 797–810.
- Ganapol B.D. Highly accurate solutions of the Blasius and Falkner-Skan boundary layer equations via convergence acceleration // [arXiv:1006.3888], 2010. (https://arxiv.org/abs/1006.3888)
- Varin V.P. A solution of the Blasius problem // Comp. Math. and Math. Phys. 2014. V. 54. № 6. P. 1025–1036.
- Varin V.P. Asymptotic Expansion of Crocco Solution and the Blasius Constant // Comp. Math. and Math. Phys. 2018. V. 58. № 4. P. 517–528.
- Crocco L. Sull strato limite laminare nei gas lungo una lamina plana // Rend. Math. Appl. 1941. Ser. 5. V. 21. P. 138–152.
- Varin V.P. Integration of Ordinary Differential Equations on Riemann Surfaces with Unbounded Precision // Comp. Math. and Math. Phys. 2019. V. 59. № 7. P. 1105–1120.
- Hille E. Ordinary Differential Equations in the Complex Domain. New-York: John Wiley & Sons, 1976.
- Hille E. Analytic functions theory. Vol. 1. N.Y.: Chelsea, 1959.
- Varin V.P. On Interpolation of Some Recurrent Sequences // Comp. Math. and Math. Phys. 2021. V. 61. № 6. P. 901–913.
- Varin V.P. Sequence Transformations in Proofs of Irrationality of Some Fundamental Constants // Comp. Math. and Math. Phys. 2022. V. 62. № 10. P. 1559–1585.
Supplementary files




