Modern approaches to the management of early rehabilitation period after ischemic stroke
- 作者: Galimov A.R.1, Stenkina N.V.1, Gaikina E.A.2, Shafikova E.S.1, Bashirova A.R.1, Yapparov A.R.1, Amirkhanyan A.V.3, Rozhkov M.I.3, Morozov N.P.1, Davletbaeva N.R.1, Gimranova N.M.1, Yamgurova R.R.1, Shagiakhmetova D.R.1, Sultanmuratov I.R.1, Reshetnikova A.A.1
-
隶属关系:
- Bashkir State Medical University, Ufa, Russia
- Ulyanovsk State University, Ulyanovsk, Russia
- Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
- 栏目: Reviews
- URL: https://rjmseer.com/1560-9537/article/view/680937
- DOI: https://doi.org/10.17816/MSER680937
- ID: 680937
如何引用文章
详细
Ischemic stroke (IS) is a form of acute cerebral circulatory failure (ACBF), the pathogenesis of which is based on occlusion of the head or neck arteries supplying blood to the brain, which leads to ischemia and, as a consequence, to the death of cortical areas of the brain and the development of focal neurological disorders. This disease remains one of the leading causes of death and disability in the world. According to the latest statistical data, about 16.9 million cases of IS are registered annually and this figure is steadily increasing, especially in connection with the increase in life expectancy of the population. The present review is devoted to the analysis of modern approaches to the management of early rehabilitation period after IS, which remains one of the leading causes of disability and mortality in the world. The authors analyze the pathophysiological basis of the early rehabilitation period, including the role of neuroplasticity, neuroinflammation, and interhemispheric cortical reorganization. Special attention is paid to innovative rehabilitation methods such as robotic technology, transcranial magnetic stimulation, virtual reality and cell therapy. The efficacy of these techniques is reviewed based on data from randomized controlled trials and meta-analyses. The results demonstrate significant improvement in functional outcomes with early initiation of rehabilitation programs and combined use of traditional and innovative techniques.
全文:

作者简介
Airat Galimov
Bashkir State Medical University, Ufa, Russia
Email: galimovajrat457@gmail.com
ORCID iD: 0000-0003-4403-0204
MD, Cand. Sci. (Medicine), Associate Professor
俄罗斯联邦, Ufa, RussiaNatalya Stenkina
Bashkir State Medical University, Ufa, Russia
Email: beep.boy.official@gmail.com
ORCID iD: 0009-0003-8060-8947
俄罗斯联邦, Ufa, Russia
Ekaterina Gaikina
Ulyanovsk State University, Ulyanovsk, Russia
Email: kategaikina2002@gmail.com
ORCID iD: 0009-0002-3512-7186
俄罗斯联邦, Ulyanovsk, Russia
Elvina Shafikova
Bashkir State Medical University, Ufa, Russia
Email: elvinrose01@icloud.com
ORCID iD: 0009-0001-1361-0866
俄罗斯联邦, Ufa, Russia
Anastasia Bashirova
Bashkir State Medical University, Ufa, Russia
Email: nastena_bashirova@bk.ru
ORCID iD: 0009-0002-3172-7395
俄罗斯联邦, Ufa, Russia
Aidar Yapparov
Bashkir State Medical University, Ufa, Russia
Email: aidaripparov40@gmail.com
ORCID iD: 0009-0008-2739-1124
俄罗斯联邦, Ufa, Russia
Adel Amirkhanyan
Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
Email: adel.amirkhanyan@bk.ru
ORCID iD: 0009-0008-6716-6167
俄罗斯联邦, Voronezh, Russia
Maksim Rozhkov
Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
Email: maksim.rozhkov.03@bk.ru
ORCID iD: 0009-0000-8202-6762
俄罗斯联邦, Voronezh, Russia
Nikita Morozov
Bashkir State Medical University, Ufa, Russia
Email: n.morozov82@yandex.ru
ORCID iD: 0009-0006-9285-1970
俄罗斯联邦, Ufa, Russia
Nazgul Davletbaeva
Bashkir State Medical University, Ufa, Russia
Email: davletbaeva.2002@inbox.ru
ORCID iD: 0009-0003-7761-1766
俄罗斯联邦, Ufa, Russia
Nargiza Gimranova
Bashkir State Medical University, Ufa, Russia
Email: nargizagimra2001@gmail.com
ORCID iD: 0009-0002-3984-6591
俄罗斯联邦, Ufa, Russia
Rosalia Yamgurova
Bashkir State Medical University, Ufa, Russia
Email: rozalia.yamgurova02@mail.ru
ORCID iD: 0009-0006-6668-2261
俄罗斯联邦, Ufa, Russia
Dilbar Shagiakhmetova
Bashkir State Medical University, Ufa, Russia
Email: shagiahmetovadilbar@yandex.ru
ORCID iD: 0009-0003-0574-0833
俄罗斯联邦, Ufa, Russia
Ildar Sultanmuratov
Bashkir State Medical University, Ufa, Russia
Email: avya_vyayv_14@mail.ru
ORCID iD: 0009-0005-9619-0869
俄罗斯联邦, Ufa, Russia
Anastasia Reshetnikova
Bashkir State Medical University, Ufa, Russia
编辑信件的主要联系方式.
Email: anastasia63372@gmail.com
ORCID iD: 0009-0005-7550-6000
俄罗斯联邦, Ufa, Russia
参考
- Kastey RM, Dyusembekov EK, Zetov ASh, et al. Epidemiological aspects and factors of acute cerebrovascular accidents (literature review). Vestnik Kazakhskogo Natsional'nogo Meditsinskogo Universiteta. 2020;(2–1):591–596. EDN: AAAPSQ
- Béjot Y, Daubail B, Giroud M. Epidemiology of stroke and transient ischemic attacks: Current knowledge and perspectives. Revue Neurologique. 2016;172(1):59–68. doi: 10.1016/j.neurol.2015.07.013
- Marshall IJ, Wang Y, Crichton S, et al. The effects of socioeconomic status on stroke risk and outcomes. The Lancet Neurology. 2015;14(12):1206–1218. doi: 10.1016/S1474-4422(15)00200-8
- Urashova ZhU, Khamidulla AA, Kabdrakhmanova GB, et al. Risk factors for ischemic stroke in rural residents (review). Farmaciya Kazahstana. 2024;257(6):210–214. doi: 10.53511/pharmkaz.2025.39.72.027 EDN: ZBTADO
- Chugunova SA, Maksimova MYu. Prevalence of modifiable risk factors in stroke patients across different ethnic groups. Nervnye Bolezni. 2023;(4):12–17. doi: 10.24412/2226-0757-2023-13041 EDN: PHETDY
- Coleman ER, Moudgal R, Lang K, et al. Early rehabilitation after stroke: a narrative review. Current Atherosclerosis Reports. 2017;19(12):1–12. doi: 10.1007/s11883-017-0686-6
- Bernhardt J, Godecke E, Johnson L, et al. Early rehabilitation after stroke. Current Opinion in Neurology. 2017;30(1):48–54. doi: 10.1097/WCO.0000000000000404
- Wei X, Sun S, Zhang M, et al. A systematic review and meta-analysis of clinical efficacy of early and late rehabilitation interventions for ischemic stroke. BMC Neurology. 2024;24(1):91. doi: 10.1186/s12883-024-03586-3
- Khrulyov AE, Kuryatnikova KM, Belova AN, et al. Modern technologies for rehabilitation of patients with motor impairments in the early recovery period of stroke (review). Modern Technologies in Medicine. 2022;14(6):64–78. doi: 10.17691/stm2022.14.6.07 EDN: OCZWFC
- Benedek A, Cernica D, Mester A, et al. Modern concepts in regenerative therapy for ischemic stroke: from stem cells for promoting angiogenesis to 3D-bioprinted scaffolds customized via carotid shear stress analysis. International Journal of Molecular Sciences. 2019;20(10):2574. doi: 10.3390/ijms20102574
- Yusupov FA, Yuldashev AA. Neuroplasticity and possibilities of modern neurorehabilitation. Bulletin of Science and Practice. 2022;8(3):251–273. doi: 10.33619/2414-2948/76/27 EDN: UTVGJM
- Shilenko LA, Karpov AA, Veretennikova EI, et al. The role of neuroinflammation in the pathogenesis of cerebral edema and hemorrhagic transformation in ischemic stroke: mechanisms and therapeutic targets. Translational Medicine. 2023;10(6):566–580. doi: 10.18705/2311-4495-2023-10-6-566-580 EDN: NYMEXY
- Demyanovskaya EG, Vasilyev AS. Clinical and pathophysiological foundations and advanced developments in the rehabilitation of patients after ischemic stroke. Lechashchi Vrach. 2021;(5):17–20. doi: 10.51793/OS.2021.29.67.004 EDN: DDDEAU
- Martínez-Coria H, Arrieta-Cruz I, Cruz ME, et al. Physiopathology of ischemic stroke and its modulation using memantine: evidence from preclinical stroke. Neural Regeneration Research. 2021;16(3):433–439. doi: 10.4103/1673-5374.293129
- Kucherova KS, Korolyova ES, Alifirova VM. The role of matrix metalloproteinases in the pathogenetic mechanisms of ischemic stroke. Russian Neurological Journal. 2024;29(3):5–15. doi: 10.30629/2658-7947-2024-29-3-5-15 EDN: ISUMAI
- Irisa K, Shichita T. Neural repair mechanisms after ischemic stroke. Inflammation and Regeneration. 2025;45:7. doi: 10.1186/s41232-025-00372-7
- Bulboacă A, Stanescu I, Nicula C, Bulboacă A. Neuroplasticity pathophysiological mechanisms underlying neuro-optometric rehabilitation in ischemic stroke — a brief review. Balneo & PRM Research Journal. 2021;12(1). doi: 10.12680/balneo.2021.412
- Han PP, Han Y, Shen XY, et al. Enriched environment-induced neuroplasticity in ischemic stroke and its underlying mechanisms. Frontiers in Cellular Neuroscience. 2023;17:1210361. doi: 10.3389/fncel.2023.1210361
- Shagaeva KA, Shagaev AS. Mechanisms of neuroplasticity and prospects for personalized rehabilitation strategies in patients with motor and cognitive impairments. Bulletin of Rehabilitation Medicine. 2021;20(5):37–46. doi: 10.38025/2078-1962-2021-20-5-37-46 EDN: DZXIEI
- Qi Y, Xu Y, Wang H, et al. Network reorganization for neurophysiological and behavioral recovery following stroke. Central Nervous System Agents in Medicinal Chemistry. 2024;24(2):117–128. doi: 10.2174/0118715249277597231226064144
- Yu P, Dong R, Wang X, et al. Neuroimaging of motor recovery after ischemic stroke—functional reorganization of motor network. NeuroImage: Clinical. 2024:103636. doi: 10.1016/j.nicl.2024.103636
- Bice AR, Xiao Q, Kong J, et al. Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke. eLife. 2022;11:e68852. doi: 10.7554/eLife.68852
- Chevallier Rufigny S. Cortical Reorganization and Sensorimotor Recovery in a Mouse Model of Intracerebral Hemorrhagic Stroke [dissertation]. University of Ottawa; 2025. Available from: https://ruor.uottawa.ca/server/api/core/bitstreams/2193d2b4-366a-4343-a0a2-34e2cae78c1e/content doi: 10.20381/ruor-30891
- Kadir RRA, Alwjwaj M, Bayraktutan U. MicroRNA: an emerging predictive, diagnostic, prognostic and therapeutic strategy in ischaemic stroke. Cellular and Molecular Neurobiology. 2022;42(5):1301–1319. doi: 10.1007/s10571-020-01028-5
- Onur B, Sağlamol G, Aydin SB, et al. The Role of Biomarkers in Stroke from Pathophysiology to Prognosis. Eurasian Journal of Critical Care. 2025;7(1):39–45. doi: 10.55994/ejcc.1656732
- Tregubov IYu, Vershinina MG, Zybina NN, et al. Laboratory biomarkers of inflammation in the acute period in patients with severe cerebrovascular damage. Kremlevskaya Meditsina. Klinicheskiy Vestnik. 2024;(4):96–103. doi: 10.48612/cgma/d2gu-2d91-kg9k EDN: MRAIGC
- Soldozy S, Yağmurlu K, Norat P, et al. Biomarkers predictive of long-term outcome after ischemic stroke: a meta-analysis. World Neurosurgery. 2022;163:e1–e42. doi: 10.1016/j.wneu.2021.10.157
- Montellano FA, Ungethüm K, Ramiro L, et al. Role of blood-based biomarkers in ischemic stroke prognosis: a systematic review. Stroke. 2021;52(2):543–551. doi: 10.1161/STROKEAHA.120.029232
- Ponomarev GV, Polyakova AV, Prokhorova MV, et al. Stroke biomarkers: issues of diagnosis and medical rehabilitation. Physical and Rehabilitation Medicine, Medical Rehabilitation. 2022;4(4):259–270. doi: 10.36425/rehab111899 EDN: YDVKYG
- Polyanskaya VV, Varypaev MS, Kardasheva AE, et al. Effectiveness of modern rehabilitation methods after cerebral infarction. Clinical Medicine (Russian Journal). 2024;102(7):485–492. doi: 10.30629/0023-2149-2024-102-7-485-492 EDN: TKKOZX
- Biryukov EA, Yastrebceva IP. The significance of modern robotic rehabilitation technologies for improving upper limb function. Doctor.Ru. 2022;21(8):39–43. doi: 10.31550/1727-2378-2022-21-8-39-43 EDN: UZZKQJ
- Rienzo A, Soza V, Bustamante M, et al. Analysis of Kinesiological Rehabilitation Technologies in patients with Stroke Vascular. 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA). 2021:1–8. doi: 10.1109/ICAACCA51523.2021.9465197
- Turuzbekova BD, Batyrov MA. Early verticalization of patients after stroke: clinical and neurophysiological aspects. Literature review. Neurosurgery and Neurology of Kazakhstan. 2023;70:31–39. doi: 10.53498/24094498_2023_1_31 EDN: MLBHOD
- Keeling AB, Piitz M, Semrau JA, et al. Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. Journal of NeuroEngineering and Rehabilitation. 2021;18:1–16. doi: 10.1186/s12984-021-00804-8
- Baldan F, Turolla A, Rimini D, et al. Robot-assisted rehabilitation of hand function after stroke: Development of prediction models for reference to therapy. Journal of Electromyography and Kinesiology. 2021;57:102534. doi: 10.1016/j.jelekin.2021.102534
- Khrulev AE, Kuryatnikova KM, Belova AN, et al. Modern rehabilitation technologies for patients with motor disorders in early stroke rehabilitation. Modern Technologies in Medicine. 2022;14(6):64–78. doi: 10.17691/stm2022.14.6.07
- Efficiency of leg exoskeleton use in rehabilitation of cerebral stroke patients. Serbian Journal of Clinical Research. 2021;257. doi: 10.2478/sjecr-2021-0045
- Louie DR, Mortenson WB, Durocher M, et al. Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation. 2021;18:1–12. doi: 10.1186/s12984-021-00942-z
- Barria P, Riquelme M, Reppich H, et al. Hand rehabilitation based on the RobHand exoskeleton in stroke patients: A case series study. Frontiers in Robotics and AI. 2023;10:1146018. doi: 10.3389/frobt.2023.1146018
- Brovko MA, Chekhonatsky AA, Kovalev EP, et al. Physiotherapeutic methods for the treatment of cerebrovascular pathology (review). Saratov Journal of Medical Scientific Research. 2022;18(3):370–374. EDN: BVUXXP
- Xing Y, Zhang Y, Li C, et al. Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models. Cellular and Molecular Neurobiology. 2023;43(4):1487–1497. doi: 10.1007/s10571-022-01264-x
- Ananyev SS, Pavlov DA, Yakupov RN, et al. Transcranial magnetic and transcutaneous electrical spinal cord stimulation in gait correction in post-stroke patients: a blinded randomized clinical trial. Bulletin of Rehabilitation Medicine. 2023;22(4):14–22. doi: 10.38025/2078-1962-2023-22-4-14-22 EDN: HIXNIS
- Lebedeva DI, Turovinina EF, Desyatova IE, et al. Evaluation of the effectiveness of transcranial magnetic stimulation in patients after ischemic stroke: a prospective study. Bulletin of Rehabilitation Medicine. 2023;22(4):31–40. doi: 10.38025/2078-1962-2023-22-4-31-40 EDN: BZGOFR
- Badoiu A, Mitran SI, Catalin B, et al. From molecule to patient rehabilitation: the impact of transcranial direct current stimulation and magnetic stimulation on stroke — a narrative review. Neural Plasticity. 2023;2023(1):5044065. doi: 10.1155/2023/5044065
- Belopasova AV, Kadykov AS, Berdnikovich ES, et al. Rehabilitation of patients with post-stroke aphasia using transcranial direct current stimulation. Physical and Rehabilitation Medicine, Medical Rehabilitation. 2022;4(3):132–139. doi: 10.36425/rehab109712 EDN: KIVFEP
- Khan A, Yuan K, Bao SC, et al. Can transcranial electrical stimulation facilitate post-stroke cognitive rehabilitation? A systematic review and meta-analysis. Frontiers in Rehabilitation Sciences. 2022;3:795737. doi: 10.3389/fresc.2022.795737
- Xing Y, Zhang Y, Li C, et al. Repetitive Transcranial Magnetic Stimulation of the Brain After Ischemic Stroke: Mechanisms from Animal Models. Cellular and Molecular Neurobiology. 2023;43:1487–1497. doi: 10.1007/s10571-022-01264-x
- Turovinina EF, Plotnikov DN. Experience in using immersive virtual reality (VIARR100) in the rehabilitation of patients with ischemic stroke in the acute period. Modern Issues of Biomedicine. 2024;8(3):227–234. doi: 10.24412/2588-0500-2024_08_03_25
- Nie P, Liu F, Lin S, et al. The effects of computer‐assisted cognitive rehabilitation on cognitive impairment after stroke: A systematic review and meta‐analysis. Journal of Clinical Nursing. 2022;31(9–10):1136–1148. doi: 10.1111/jocn.16030
- Mingming Y, Bolun Z, Zhijian L, et al. Effectiveness of computer-based training on post-stroke cognitive rehabilitation: A systematic review and meta-analysis. Neuropsychological Rehabilitation. 2022;32(3):481–497. doi: 10.1080/09602011.2020.1831555
- Gabele M. Development and design of software-based methods to promote motivation of patients in cognitive rehabilitation [dissertation]. Magdeburg; 2023. Available from: https://opendata.uni-halle.de//handle/1981185920/103813 doi: 10.25673/101862
- Kotov SV, Borisova VA, Slyunkova EV, et al. Dynamics of cognitive deficit recovery in patients in the early recovery period of ischemic stroke. S.S. Korsakov Journal of Neurology And Psychiatry. 2021;121(11):26–32. doi: 10.17116/jnevro202112111126 EDN: LRFGYD
- Motriy EV, Shepel IS, Neustroeva TE. Mirror therapy as a method of rehabilitation for stroke patients. Clinical Medicine. 2023;101(11):577–581. doi: 10.30629/0023-2149-2023-101-11-577-581
- Cui W, Huang L, Tian Y, et al. Effect and mechanism of mirror therapy on lower limb rehabilitation after ischemic stroke: a fMRI study. NeuroRehabilitation. 2022;51(1):65–77. doi: 10.3233/NRE-210307
- Wen X, Li L, Li X, et al. Therapeutic role of additional mirror therapy on the recovery of upper extremity motor function after stroke: a single‐blind, randomized controlled trial. Neural Plasticity. 2022;2022(1):8966920. doi: 10.1155/2022/8966920
- Jaafar N, Che Daud AZ, Ahmad Roslan NF, et al. Mirror therapy rehabilitation in stroke: a scoping review of upper limb recovery and brain activities. Rehabilitation Research and Practice. 2021;2021(1):9487319. doi: 10.1155/2021/9487319
- Tymianski M. Role of neuroprotective approaches in the recanalization era. Stroke. 2024;55(7):1927–1931. doi: 10.1161/STROKEAHA.123.044229
- Pérez-Mato M, López-Arias E, Bugallo-Casal A, et al. New perspectives in neuroprotection for ischemic stroke. Neuroscience. 2024;550:30–42. doi: 10.1016/j.neuroscience.2024.02.017
- Chia GYY, Yeo S, Ho JSY, et al. Neuroprotective agents in acute ischemic stroke. Exploration of Neuroprotective Therapy. 2023;3:47–70. doi: 10.37349/ent.2023.00037
- Chamorro Á, Lo EH, Renú A, et al. The future of neuroprotection in stroke. Journal of Neurology, Neurosurgery & Psychiatry. 2021;92(2):129–135. doi: 10.1136/jnnp-2020-324283
- Abou Zaki SDB, Lokin JK. Efficacy and safety of CDP-choline, cerebrolysin, MLC601, and edaravone in recovery of patients with acute ischemic strokes: A meta-analysis. Exploration of Neuroprotective Therapy. 2023;3(5):398–408. doi: 10.37349/ent.2023.00057
- Mureșanu DF, Livinț Popa L, Chira D, et al. Role and impact of cerebrolysin for ischemic stroke care. Journal of Clinical Medicine. 2022;11(5):1273. doi: 10.3390/jcm11051273
- Geng H, Li M, Tang J, et al. Early rehabilitation exercise after stroke improves neurological recovery through enhancing angiogenesis in patients and cerebral ischemia rat model. International Journal of Molecular Sciences. 2022;23(18):10508. doi: 10.3390/ijms231810508
- Aderinto N, Olatunji G, Kokori E, et al. Stem cell therapies in stroke rehabilitation: a narrative review of current strategies and future prospects. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2024;60(1):79. doi: 10.1186/s41983-024-00851-7
- Zhou G, Wang Y, Gao S, et al. Potential mechanisms and perspectives in ischemic stroke treatment using stem cell therapies. Frontiers in Cell and Developmental Biology. 2021;9:646927. doi: 10.3389/fcell.2021.646927
- Zhao T, Zhu T, Xie L, et al. Neural stem cells therapy for ischemic stroke: progress and challenges. Translational Stroke Research. 2022;13(5):665–675. doi: 10.1007/s12975-022-00984-y
- Zhou L, Zhu H, Bai X, et al. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke. Stem Cell Research & Therapy. 2022;13(1):195. doi: 10.1186/s13287-022-02876-2
- Rahman MM, Islam MR, Islam MT, et al. Stem cell transplantation therapy and neurological disorders: current status and future perspectives. Biology. 2022;11(1):147. doi: 10.3390/biology11010147
- Jingli Y, Jing W, Saeed Y. Ischemic brain stroke and mesenchymal stem cells: An overview of molecular mechanisms and therapeutic potential. Stem Cells International. 2022;2022:5930244. doi: 10.1155/2022/5930244
- Plakhotnichenko MM, Glasovskaya MY. Psychologist in rehabilitation: features of psychological support for patients after cerebral stroke. Bulletin of Tver State University. 2022;(4). (in Russ). doi: 10.26456/vtpsyped/2022.4.005
- Ivanova GE, Bodrova RA, Komarnitsky VS, et al. Algorithm for formulating a rehabilitation diagnosis using the International Classification of Functioning for stroke patients: a clinical case. Physical and Rehabilitation Medicine, Medical Rehabilitation. 2022;4(1):37–54. doi: 10.36425/rehab96918 EDN: FLURCZ
- Eng JJ, Pastva AM. Advances in remote monitoring for stroke recovery. Stroke. 2022;53(8):2658–2661. doi: 10.1161/STROKEAHA.122.038885
- Sun S, Li Y, Zhang G, et al. A randomized controlled trial of telerehabilitation intervention for acute ischemic stroke patients post-discharge. Journal of Clinical Neuroscience. 2025;136:111245. doi: 10.1016/j.jocn.2025.111245
- Liang Q, Tao Y, He J, et al. Effects of home-based telemedicine and mHealth interventions on blood pressure in stroke patients: a systematic evaluation and meta-analysis of randomized controlled trials. Journal of Stroke and Cerebrovascular Diseases. 2024:107928. doi: 10.1016/j.jstrokecerebrovasdis.2024.107928
- Nikolaev VA. Telerehabilitation of stroke patients: current trends in the Russian healthcare system. Healthcare Manager. 2022;(2):65–75. doi: 10.21045/1811-0185-2022-2-65-75 EDN: KXSWNB
- Manchi MR, Venkatachalam AM, Atem FD, et al. Effect of inpatient rehabilitation facility care on ninety-day modified Rankin score in ischemic stroke patients. Journal of Stroke and Cerebrovascular Diseases. 2023;32(6):107109. doi: 10.1016/j.jstrokecerebrovasdis.2023.107109
- Pożarowszczyk N, Kurkowska-Jastrzębska I, Sarzyńska-Długosz I, et al. Reliability of the modified Rankin Scale in clinical practice of stroke units and rehabilitation wards. Frontiers in Neurology. 2023;14:1064642. doi: 10.3389/fneur.2023.1064642
- Sato H, Mitsui N, Fujikawa S, et al. Critical evaluation of the modified Rankin Scale for assessment of the efficacy of mechanical thrombectomy: A retrospective comparison between the modified Rankin Scale and functional independence measure. Interventional Neuroradiology. 2023:15910199231185635. doi: 10.1177/15910199231185635
- Chye A, Hackett ML, Hankey GJ, et al. Repeated measures of modified Rankin scale scores to assess functional recovery from stroke: affinity study findings. Journal of the American Heart Association. 2022;11(16):e025425. doi: 10.1161/JAHA.121.025425
- Ahrens J, Shao R, Blackport D, et al. Cognitive-behavioral therapy for managing depressive and anxiety symptoms after stroke: a systematic review and meta-analysis. Topics in Stroke Rehabilitation. 2022;30(4):368–383. doi: 10.1080/10749357.2022.2049505
- Wan M, Zhang Y, Wu Y, et al. Cognitive behavioural therapy for depression, quality of life, and cognitive function in the post-stroke period: systematic review and meta-analysis. Psychogeriatrics. 2024;24(4):983–992. doi: 10.1111/psyg.13125
- Bąk E, Młynarska A, Marcisz C, et al. Kinesiophobia in elderly Polish patients after ischemic stroke, including frailty syndrome. Neuropsychiatric Disease and Treatment. 2022;18:707. doi: 10.2147/NDT.S352151
- Wang H, Huang Y, Li M, et al. Regional brain dysfunction in insomnia after ischemic stroke: a resting-state fMRI study. Frontiers in Neurology. 2022;13:1025174. doi: 10.3389/fneur.2022.1025174
补充文件
