Современные подходы к ведению раннего реабилитационного периода после ишемического инсульта



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Ишемический инсульт (ИИ) — это одна из форм острого нарушения мозгового кровообращения (ОНМК), в основе патогенеза которого лежит окклюзия артерий головы или шеи, кровоснабжающих мозг, приводящая к ишемии и, как следствие, к гибели участков коры мозга и развитию очаговых неврологических нарушений. Данное заболевание остаётся одной из ведущих причин смертности и инвалидности в мире. Согласно последним статистическим данным, ежегодно регистрируется около 16,9 млн случаев ИИ, и данный показатель неуклонно растёт, особенно в связи с увеличением продолжительности жизни населения. Настоящий обзор посвящён анализу современных подходов к ведению раннего реабилитационного периода после ИИ. Авторами проанализированы патофизиологические основы раннего восстановительного периода, включая роль нейропластичности, нейровоспаления и межполушарной реорганизации коры. Особое внимание уделено инновационным методам реабилитации, таким как роботизированные технологии, транскраниальная магнитная стимуляция, виртуальная реальность и клеточная терапия. Проведён обзор эффективности данных методов на основе данных рандомизированных контролируемых исследований и метаанализов. Результаты демонстрируют значительное улучшение функциональных исходов при раннем начале реабилитационных программ и комбинированном применении традиционных и инновационных методик.

Полный текст

Доступ закрыт

Об авторах

Айрат Рамирович Галимов

Башкирский государственный медицинский университет, Уфа, Россия

Email: galimovajrat457@gmail.com
ORCID iD: 0000-0003-4403-0204

канд. мед. наук, доцент

Россия, Уфа, Россия

Наталья Владиславовна Стенькина

Башкирский государственный медицинский университет, Уфа, Россия

Email: beep.boy.official@gmail.com
ORCID iD: 0009-0003-8060-8947
Россия, Уфа, Россия

Екатерина Александровна Гайкина

Ульяновский государственный университет, Ульяновск, Россия

Email: kategaikina2002@gmail.com
ORCID iD: 0009-0002-3512-7186
Россия, Ульяновск, Россия

Эльвина Шагитовна Шафикова

Башкирский государственный медицинский университет, Уфа, Россия

Email: elvinrose01@icloud.com
ORCID iD: 0009-0001-1361-0866
Россия, Уфа, Россия

Анастасия Рафаилевна Баширова

Башкирский государственный медицинский университет, Уфа, Россия

Email: nastena_bashirova@bk.ru
ORCID iD: 0009-0002-3172-7395
Россия, Уфа, Россия

Айдар Ринатович Яппаров

Башкирский государственный медицинский университет, Уфа, Россия

Email: aidaripparov40@gmail.com
ORCID iD: 0009-0008-2739-1124
Россия, Уфа, Россия

Адель Вагеевна Амирханян

Воронежский государственный медицинский университет им. Н.Н. Бурденко, Воронеж, Россия

Email: adel.amirkhanyan@bk.ru
ORCID iD: 0009-0008-6716-6167
Россия, Воронеж, Россия

Максим Иванович Рожков

Воронежский государственный медицинский университет им. Н.Н. Бурденко, Воронеж, Россия

Email: maksim.rozhkov.03@bk.ru
ORCID iD: 0009-0000-8202-6762
Россия, Воронеж, Россия

Никита Павлович Морозов

Башкирский государственный медицинский университет, Уфа, Россия

Email: n.morozov82@yandex.ru
ORCID iD: 0009-0006-9285-1970
Россия, Уфа, Россия

Назгуль Рафаиловна Давлетбаева

Башкирский государственный медицинский университет, Уфа, Россия

Email: davletbaeva.2002@inbox.ru
ORCID iD: 0009-0003-7761-1766
Россия, Уфа, Россия

Наргиза Марсовна Гимранова

Башкирский государственный медицинский университет, Уфа, Россия

Email: nargizagimra2001@gmail.com
ORCID iD: 0009-0002-3984-6591
Россия, Уфа, Россия

Розалия Разитовна Ямгурова

Башкирский государственный медицинский университет, Уфа, Россия

Email: rozalia.yamgurova02@mail.ru
ORCID iD: 0009-0006-6668-2261
Россия, Уфа, Россия

Дильбар Рустамовна Шагиахметова

Башкирский государственный медицинский университет, Уфа, Россия

Email: shagiahmetovadilbar@yandex.ru
ORCID iD: 0009-0003-0574-0833
Россия, Уфа, Россия

Ильдар Равилович Султанмуратов

Башкирский государственный медицинский университет, Уфа, Россия

Email: avya_vyayv_14@mail.ru
ORCID iD: 0009-0005-9619-0869
Россия, Уфа, Россия

Анастасия Александровна Решетникова

Башкирский государственный медицинский университет, Уфа, Россия

Автор, ответственный за переписку.
Email: anastasia63372@gmail.com
ORCID iD: 0009-0005-7550-6000
Россия, Уфа, Россия

Список литературы

  1. Kastey RM, Dyusembekov EK, Zetov ASh, et al. Epidemiological aspects and factors of acute cerebrovascular accidents (literature review). Vestnik Kazakhskogo Natsional'nogo Meditsinskogo Universiteta. 2020;(2–1):591–596. EDN: AAAPSQ
  2. Béjot Y, Daubail B, Giroud M. Epidemiology of stroke and transient ischemic attacks: Current knowledge and perspectives. Revue Neurologique. 2016;172(1):59–68. doi: 10.1016/j.neurol.2015.07.013
  3. Marshall IJ, Wang Y, Crichton S, et al. The effects of socioeconomic status on stroke risk and outcomes. The Lancet Neurology. 2015;14(12):1206–1218. doi: 10.1016/S1474-4422(15)00200-8
  4. Urashova ZhU, Khamidulla AA, Kabdrakhmanova GB, et al. Risk factors for ischemic stroke in rural residents (review). Farmaciya Kazahstana. 2024;257(6):210–214. doi: 10.53511/pharmkaz.2025.39.72.027 EDN: ZBTADO
  5. Chugunova SA, Maksimova MYu. Prevalence of modifiable risk factors in stroke patients across different ethnic groups. Nervnye Bolezni. 2023;(4):12–17. doi: 10.24412/2226-0757-2023-13041 EDN: PHETDY
  6. Coleman ER, Moudgal R, Lang K, et al. Early rehabilitation after stroke: a narrative review. Current Atherosclerosis Reports. 2017;19(12):1–12. doi: 10.1007/s11883-017-0686-6
  7. Bernhardt J, Godecke E, Johnson L, et al. Early rehabilitation after stroke. Current Opinion in Neurology. 2017;30(1):48–54. doi: 10.1097/WCO.0000000000000404
  8. Wei X, Sun S, Zhang M, et al. A systematic review and meta-analysis of clinical efficacy of early and late rehabilitation interventions for ischemic stroke. BMC Neurology. 2024;24(1):91. doi: 10.1186/s12883-024-03586-3
  9. Khrulyov AE, Kuryatnikova KM, Belova AN, et al. Modern technologies for rehabilitation of patients with motor impairments in the early recovery period of stroke (review). Modern Technologies in Medicine. 2022;14(6):64–78. doi: 10.17691/stm2022.14.6.07 EDN: OCZWFC
  10. Benedek A, Cernica D, Mester A, et al. Modern concepts in regenerative therapy for ischemic stroke: from stem cells for promoting angiogenesis to 3D-bioprinted scaffolds customized via carotid shear stress analysis. International Journal of Molecular Sciences. 2019;20(10):2574. doi: 10.3390/ijms20102574
  11. Yusupov FA, Yuldashev AA. Neuroplasticity and possibilities of modern neurorehabilitation. Bulletin of Science and Practice. 2022;8(3):251–273. doi: 10.33619/2414-2948/76/27 EDN: UTVGJM
  12. Shilenko LA, Karpov AA, Veretennikova EI, et al. The role of neuroinflammation in the pathogenesis of cerebral edema and hemorrhagic transformation in ischemic stroke: mechanisms and therapeutic targets. Translational Medicine. 2023;10(6):566–580. doi: 10.18705/2311-4495-2023-10-6-566-580 EDN: NYMEXY
  13. Demyanovskaya EG, Vasilyev AS. Clinical and pathophysiological foundations and advanced developments in the rehabilitation of patients after ischemic stroke. Lechashchi Vrach. 2021;(5):17–20. doi: 10.51793/OS.2021.29.67.004 EDN: DDDEAU
  14. Martínez-Coria H, Arrieta-Cruz I, Cruz ME, et al. Physiopathology of ischemic stroke and its modulation using memantine: evidence from preclinical stroke. Neural Regeneration Research. 2021;16(3):433–439. doi: 10.4103/1673-5374.293129
  15. Kucherova KS, Korolyova ES, Alifirova VM. The role of matrix metalloproteinases in the pathogenetic mechanisms of ischemic stroke. Russian Neurological Journal. 2024;29(3):5–15. doi: 10.30629/2658-7947-2024-29-3-5-15 EDN: ISUMAI
  16. Irisa K, Shichita T. Neural repair mechanisms after ischemic stroke. Inflammation and Regeneration. 2025;45:7. doi: 10.1186/s41232-025-00372-7
  17. Bulboacă A, Stanescu I, Nicula C, Bulboacă A. Neuroplasticity pathophysiological mechanisms underlying neuro-optometric rehabilitation in ischemic stroke — a brief review. Balneo & PRM Research Journal. 2021;12(1). doi: 10.12680/balneo.2021.412
  18. Han PP, Han Y, Shen XY, et al. Enriched environment-induced neuroplasticity in ischemic stroke and its underlying mechanisms. Frontiers in Cellular Neuroscience. 2023;17:1210361. doi: 10.3389/fncel.2023.1210361
  19. Shagaeva KA, Shagaev AS. Mechanisms of neuroplasticity and prospects for personalized rehabilitation strategies in patients with motor and cognitive impairments. Bulletin of Rehabilitation Medicine. 2021;20(5):37–46. doi: 10.38025/2078-1962-2021-20-5-37-46 EDN: DZXIEI
  20. Qi Y, Xu Y, Wang H, et al. Network reorganization for neurophysiological and behavioral recovery following stroke. Central Nervous System Agents in Medicinal Chemistry. 2024;24(2):117–128. doi: 10.2174/0118715249277597231226064144
  21. Yu P, Dong R, Wang X, et al. Neuroimaging of motor recovery after ischemic stroke—functional reorganization of motor network. NeuroImage: Clinical. 2024:103636. doi: 10.1016/j.nicl.2024.103636
  22. Bice AR, Xiao Q, Kong J, et al. Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke. eLife. 2022;11:e68852. doi: 10.7554/eLife.68852
  23. Chevallier Rufigny S. Cortical Reorganization and Sensorimotor Recovery in a Mouse Model of Intracerebral Hemorrhagic Stroke [dissertation]. University of Ottawa; 2025. Available from: https://ruor.uottawa.ca/server/api/core/bitstreams/2193d2b4-366a-4343-a0a2-34e2cae78c1e/content doi: 10.20381/ruor-30891
  24. Kadir RRA, Alwjwaj M, Bayraktutan U. MicroRNA: an emerging predictive, diagnostic, prognostic and therapeutic strategy in ischaemic stroke. Cellular and Molecular Neurobiology. 2022;42(5):1301–1319. doi: 10.1007/s10571-020-01028-5
  25. Onur B, Sağlamol G, Aydin SB, et al. The Role of Biomarkers in Stroke from Pathophysiology to Prognosis. Eurasian Journal of Critical Care. 2025;7(1):39–45. doi: 10.55994/ejcc.1656732
  26. Tregubov IYu, Vershinina MG, Zybina NN, et al. Laboratory biomarkers of inflammation in the acute period in patients with severe cerebrovascular damage. Kremlevskaya Meditsina. Klinicheskiy Vestnik. 2024;(4):96–103. doi: 10.48612/cgma/d2gu-2d91-kg9k EDN: MRAIGC
  27. Soldozy S, Yağmurlu K, Norat P, et al. Biomarkers predictive of long-term outcome after ischemic stroke: a meta-analysis. World Neurosurgery. 2022;163:e1–e42. doi: 10.1016/j.wneu.2021.10.157
  28. Montellano FA, Ungethüm K, Ramiro L, et al. Role of blood-based biomarkers in ischemic stroke prognosis: a systematic review. Stroke. 2021;52(2):543–551. doi: 10.1161/STROKEAHA.120.029232
  29. Ponomarev GV, Polyakova AV, Prokhorova MV, et al. Stroke biomarkers: issues of diagnosis and medical rehabilitation. Physical and Rehabilitation Medicine, Medical Rehabilitation. 2022;4(4):259–270. doi: 10.36425/rehab111899 EDN: YDVKYG
  30. Polyanskaya VV, Varypaev MS, Kardasheva AE, et al. Effectiveness of modern rehabilitation methods after cerebral infarction. Clinical Medicine (Russian Journal). 2024;102(7):485–492. doi: 10.30629/0023-2149-2024-102-7-485-492 EDN: TKKOZX
  31. Biryukov EA, Yastrebceva IP. The significance of modern robotic rehabilitation technologies for improving upper limb function. Doctor.Ru. 2022;21(8):39–43. doi: 10.31550/1727-2378-2022-21-8-39-43 EDN: UZZKQJ
  32. Rienzo A, Soza V, Bustamante M, et al. Analysis of Kinesiological Rehabilitation Technologies in patients with Stroke Vascular. 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA). 2021:1–8. doi: 10.1109/ICAACCA51523.2021.9465197
  33. Turuzbekova BD, Batyrov MA. Early verticalization of patients after stroke: clinical and neurophysiological aspects. Literature review. Neurosurgery and Neurology of Kazakhstan. 2023;70:31–39. doi: 10.53498/24094498_2023_1_31 EDN: MLBHOD
  34. Keeling AB, Piitz M, Semrau JA, et al. Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. Journal of NeuroEngineering and Rehabilitation. 2021;18:1–16. doi: 10.1186/s12984-021-00804-8
  35. Baldan F, Turolla A, Rimini D, et al. Robot-assisted rehabilitation of hand function after stroke: Development of prediction models for reference to therapy. Journal of Electromyography and Kinesiology. 2021;57:102534. doi: 10.1016/j.jelekin.2021.102534
  36. Khrulev AE, Kuryatnikova KM, Belova AN, et al. Modern rehabilitation technologies for patients with motor disorders in early stroke rehabilitation. Modern Technologies in Medicine. 2022;14(6):64–78. doi: 10.17691/stm2022.14.6.07
  37. Efficiency of leg exoskeleton use in rehabilitation of cerebral stroke patients. Serbian Journal of Clinical Research. 2021;257. doi: 10.2478/sjecr-2021-0045
  38. Louie DR, Mortenson WB, Durocher M, et al. Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation. 2021;18:1–12. doi: 10.1186/s12984-021-00942-z
  39. Barria P, Riquelme M, Reppich H, et al. Hand rehabilitation based on the RobHand exoskeleton in stroke patients: A case series study. Frontiers in Robotics and AI. 2023;10:1146018. doi: 10.3389/frobt.2023.1146018
  40. Brovko MA, Chekhonatsky AA, Kovalev EP, et al. Physiotherapeutic methods for the treatment of cerebrovascular pathology (review). Saratov Journal of Medical Scientific Research. 2022;18(3):370–374. EDN: BVUXXP
  41. Xing Y, Zhang Y, Li C, et al. Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models. Cellular and Molecular Neurobiology. 2023;43(4):1487–1497. doi: 10.1007/s10571-022-01264-x
  42. Ananyev SS, Pavlov DA, Yakupov RN, et al. Transcranial magnetic and transcutaneous electrical spinal cord stimulation in gait correction in post-stroke patients: a blinded randomized clinical trial. Bulletin of Rehabilitation Medicine. 2023;22(4):14–22. doi: 10.38025/2078-1962-2023-22-4-14-22 EDN: HIXNIS
  43. Lebedeva DI, Turovinina EF, Desyatova IE, et al. Evaluation of the effectiveness of transcranial magnetic stimulation in patients after ischemic stroke: a prospective study. Bulletin of Rehabilitation Medicine. 2023;22(4):31–40. doi: 10.38025/2078-1962-2023-22-4-31-40 EDN: BZGOFR
  44. Badoiu A, Mitran SI, Catalin B, et al. From molecule to patient rehabilitation: the impact of transcranial direct current stimulation and magnetic stimulation on stroke — a narrative review. Neural Plasticity. 2023;2023(1):5044065. doi: 10.1155/2023/5044065
  45. Belopasova AV, Kadykov AS, Berdnikovich ES, et al. Rehabilitation of patients with post-stroke aphasia using transcranial direct current stimulation. Physical and Rehabilitation Medicine, Medical Rehabilitation. 2022;4(3):132–139. doi: 10.36425/rehab109712 EDN: KIVFEP
  46. Khan A, Yuan K, Bao SC, et al. Can transcranial electrical stimulation facilitate post-stroke cognitive rehabilitation? A systematic review and meta-analysis. Frontiers in Rehabilitation Sciences. 2022;3:795737. doi: 10.3389/fresc.2022.795737
  47. Xing Y, Zhang Y, Li C, et al. Repetitive Transcranial Magnetic Stimulation of the Brain After Ischemic Stroke: Mechanisms from Animal Models. Cellular and Molecular Neurobiology. 2023;43:1487–1497. doi: 10.1007/s10571-022-01264-x
  48. Turovinina EF, Plotnikov DN. Experience in using immersive virtual reality (VIARR100) in the rehabilitation of patients with ischemic stroke in the acute period. Modern Issues of Biomedicine. 2024;8(3):227–234. doi: 10.24412/2588-0500-2024_08_03_25
  49. Nie P, Liu F, Lin S, et al. The effects of computer‐assisted cognitive rehabilitation on cognitive impairment after stroke: A systematic review and meta‐analysis. Journal of Clinical Nursing. 2022;31(9–10):1136–1148. doi: 10.1111/jocn.16030
  50. Mingming Y, Bolun Z, Zhijian L, et al. Effectiveness of computer-based training on post-stroke cognitive rehabilitation: A systematic review and meta-analysis. Neuropsychological Rehabilitation. 2022;32(3):481–497. doi: 10.1080/09602011.2020.1831555
  51. Gabele M. Development and design of software-based methods to promote motivation of patients in cognitive rehabilitation [dissertation]. Magdeburg; 2023. Available from: https://opendata.uni-halle.de//handle/1981185920/103813 doi: 10.25673/101862
  52. Kotov SV, Borisova VA, Slyunkova EV, et al. Dynamics of cognitive deficit recovery in patients in the early recovery period of ischemic stroke. S.S. Korsakov Journal of Neurology And Psychiatry. 2021;121(11):26–32. doi: 10.17116/jnevro202112111126 EDN: LRFGYD
  53. Motriy EV, Shepel IS, Neustroeva TE. Mirror therapy as a method of rehabilitation for stroke patients. Clinical Medicine. 2023;101(11):577–581. doi: 10.30629/0023-2149-2023-101-11-577-581
  54. Cui W, Huang L, Tian Y, et al. Effect and mechanism of mirror therapy on lower limb rehabilitation after ischemic stroke: a fMRI study. NeuroRehabilitation. 2022;51(1):65–77. doi: 10.3233/NRE-210307
  55. Wen X, Li L, Li X, et al. Therapeutic role of additional mirror therapy on the recovery of upper extremity motor function after stroke: a single‐blind, randomized controlled trial. Neural Plasticity. 2022;2022(1):8966920. doi: 10.1155/2022/8966920
  56. Jaafar N, Che Daud AZ, Ahmad Roslan NF, et al. Mirror therapy rehabilitation in stroke: a scoping review of upper limb recovery and brain activities. Rehabilitation Research and Practice. 2021;2021(1):9487319. doi: 10.1155/2021/9487319
  57. Tymianski M. Role of neuroprotective approaches in the recanalization era. Stroke. 2024;55(7):1927–1931. doi: 10.1161/STROKEAHA.123.044229
  58. Pérez-Mato M, López-Arias E, Bugallo-Casal A, et al. New perspectives in neuroprotection for ischemic stroke. Neuroscience. 2024;550:30–42. doi: 10.1016/j.neuroscience.2024.02.017
  59. Chia GYY, Yeo S, Ho JSY, et al. Neuroprotective agents in acute ischemic stroke. Exploration of Neuroprotective Therapy. 2023;3:47–70. doi: 10.37349/ent.2023.00037
  60. Chamorro Á, Lo EH, Renú A, et al. The future of neuroprotection in stroke. Journal of Neurology, Neurosurgery & Psychiatry. 2021;92(2):129–135. doi: 10.1136/jnnp-2020-324283
  61. Abou Zaki SDB, Lokin JK. Efficacy and safety of CDP-choline, cerebrolysin, MLC601, and edaravone in recovery of patients with acute ischemic strokes: A meta-analysis. Exploration of Neuroprotective Therapy. 2023;3(5):398–408. doi: 10.37349/ent.2023.00057
  62. Mureșanu DF, Livinț Popa L, Chira D, et al. Role and impact of cerebrolysin for ischemic stroke care. Journal of Clinical Medicine. 2022;11(5):1273. doi: 10.3390/jcm11051273
  63. Geng H, Li M, Tang J, et al. Early rehabilitation exercise after stroke improves neurological recovery through enhancing angiogenesis in patients and cerebral ischemia rat model. International Journal of Molecular Sciences. 2022;23(18):10508. doi: 10.3390/ijms231810508
  64. Aderinto N, Olatunji G, Kokori E, et al. Stem cell therapies in stroke rehabilitation: a narrative review of current strategies and future prospects. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2024;60(1):79. doi: 10.1186/s41983-024-00851-7
  65. Zhou G, Wang Y, Gao S, et al. Potential mechanisms and perspectives in ischemic stroke treatment using stem cell therapies. Frontiers in Cell and Developmental Biology. 2021;9:646927. doi: 10.3389/fcell.2021.646927
  66. Zhao T, Zhu T, Xie L, et al. Neural stem cells therapy for ischemic stroke: progress and challenges. Translational Stroke Research. 2022;13(5):665–675. doi: 10.1007/s12975-022-00984-y
  67. Zhou L, Zhu H, Bai X, et al. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke. Stem Cell Research & Therapy. 2022;13(1):195. doi: 10.1186/s13287-022-02876-2
  68. Rahman MM, Islam MR, Islam MT, et al. Stem cell transplantation therapy and neurological disorders: current status and future perspectives. Biology. 2022;11(1):147. doi: 10.3390/biology11010147
  69. Jingli Y, Jing W, Saeed Y. Ischemic brain stroke and mesenchymal stem cells: An overview of molecular mechanisms and therapeutic potential. Stem Cells International. 2022;2022:5930244. doi: 10.1155/2022/5930244
  70. Plakhotnichenko MM, Glasovskaya MY. Psychologist in rehabilitation: features of psychological support for patients after cerebral stroke. Bulletin of Tver State University. 2022;(4). (in Russ). doi: 10.26456/vtpsyped/2022.4.005
  71. Ivanova GE, Bodrova RA, Komarnitsky VS, et al. Algorithm for formulating a rehabilitation diagnosis using the International Classification of Functioning for stroke patients: a clinical case. Physical and Rehabilitation Medicine, Medical Rehabilitation. 2022;4(1):37–54. doi: 10.36425/rehab96918 EDN: FLURCZ
  72. Eng JJ, Pastva AM. Advances in remote monitoring for stroke recovery. Stroke. 2022;53(8):2658–2661. doi: 10.1161/STROKEAHA.122.038885
  73. Sun S, Li Y, Zhang G, et al. A randomized controlled trial of telerehabilitation intervention for acute ischemic stroke patients post-discharge. Journal of Clinical Neuroscience. 2025;136:111245. doi: 10.1016/j.jocn.2025.111245
  74. Liang Q, Tao Y, He J, et al. Effects of home-based telemedicine and mHealth interventions on blood pressure in stroke patients: a systematic evaluation and meta-analysis of randomized controlled trials. Journal of Stroke and Cerebrovascular Diseases. 2024:107928. doi: 10.1016/j.jstrokecerebrovasdis.2024.107928
  75. Nikolaev VA. Telerehabilitation of stroke patients: current trends in the Russian healthcare system. Healthcare Manager. 2022;(2):65–75. doi: 10.21045/1811-0185-2022-2-65-75 EDN: KXSWNB
  76. Manchi MR, Venkatachalam AM, Atem FD, et al. Effect of inpatient rehabilitation facility care on ninety-day modified Rankin score in ischemic stroke patients. Journal of Stroke and Cerebrovascular Diseases. 2023;32(6):107109. doi: 10.1016/j.jstrokecerebrovasdis.2023.107109
  77. Pożarowszczyk N, Kurkowska-Jastrzębska I, Sarzyńska-Długosz I, et al. Reliability of the modified Rankin Scale in clinical practice of stroke units and rehabilitation wards. Frontiers in Neurology. 2023;14:1064642. doi: 10.3389/fneur.2023.1064642
  78. Sato H, Mitsui N, Fujikawa S, et al. Critical evaluation of the modified Rankin Scale for assessment of the efficacy of mechanical thrombectomy: A retrospective comparison between the modified Rankin Scale and functional independence measure. Interventional Neuroradiology. 2023:15910199231185635. doi: 10.1177/15910199231185635
  79. Chye A, Hackett ML, Hankey GJ, et al. Repeated measures of modified Rankin scale scores to assess functional recovery from stroke: affinity study findings. Journal of the American Heart Association. 2022;11(16):e025425. doi: 10.1161/JAHA.121.025425
  80. Ahrens J, Shao R, Blackport D, et al. Cognitive-behavioral therapy for managing depressive and anxiety symptoms after stroke: a systematic review and meta-analysis. Topics in Stroke Rehabilitation. 2022;30(4):368–383. doi: 10.1080/10749357.2022.2049505
  81. Wan M, Zhang Y, Wu Y, et al. Cognitive behavioural therapy for depression, quality of life, and cognitive function in the post-stroke period: systematic review and meta-analysis. Psychogeriatrics. 2024;24(4):983–992. doi: 10.1111/psyg.13125
  82. Bąk E, Młynarska A, Marcisz C, et al. Kinesiophobia in elderly Polish patients after ischemic stroke, including frailty syndrome. Neuropsychiatric Disease and Treatment. 2022;18:707. doi: 10.2147/NDT.S352151
  83. Wang H, Huang Y, Li M, et al. Regional brain dysfunction in insomnia after ischemic stroke: a resting-state fMRI study. Frontiers in Neurology. 2022;13:1025174. doi: 10.3389/fneur.2022.1025174

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86505 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80654 от 15.03.2021 г
.