Physical activity as a regulator of myocardial remodeling: from cellular mechanisms to clinical recommendations
- Authors: Idigov M.K.1, Shirkhanyan S.G.1, Galimov A.R.2, Khechumyan A.A.1, Khoshafyan A.O.1, Pashaev G.V.1, Mamedkhanova A.A.1, Mamedov M.S.1, Mamedkhanov A.A.1, Kankaeva A.V.1, Susarova A.M.1, Minaev D.V.1, Levdik I.Y.3, Petrova A.O.4, Aliev M.V.5
-
Affiliations:
- Rostov state medical university
- Bashkir state medical university
- Far Eastern State Medical University, Khabarovsk, Russian Federation
- Samara state medical university
- Pavlov First Saint Petersburg State Medical University
- Section: Reviews
- URL: https://rjmseer.com/1560-9537/article/view/663975
- DOI: https://doi.org/10.17816/MSER663975
- ID: 663975
Cite item
Abstract
Cardiac rehabilitation is an effective method for restoring and improving cardiovascular function in patients with cardiovascular diseases. Rehabilitation exercises not only enhance physical endurance and improve patients' psycho-emotional state but also play a key role in myocardial remodeling. This article explores the molecular and cellular mechanisms through which physical activity influences cardiac tissue repair, including the regulation of cardiomyocyte apoptosis, angiogenesis, fibrosis, and inflammatory processes. The review analyzes current research data confirming the positive impact of exercise on the morphological and functional state of the heart, as well as the prospects for using rehabilitation training as an adjunctive strategy to optimize myocardial remodeling. Particular attention is given to the role of non-coding RNAs, signaling pathways, and intercellular interactions in these processes. The study also identifies gaps in our understanding of the mechanisms underlying exercise-induced improvements in pathological cardiac remodeling, highlighting the need for further research.
Full Text

About the authors
Magomed-Emi Kh. Idigov
Rostov state medical university
Email: maga707q@mail.ru
ORCID iD: 0009-0002-9705-2255
student
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Sofia G. Shirkhanyan
Rostov state medical university
Email: goldensofii@gmail.com
ORCID iD: 0009-0007-7991-0515
student
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Airat R. Galimov
Bashkir state medical university
Author for correspondence.
Email: galimovajrat457@gmail.com
ORCID iD: 0000-0003-4403-0204
SPIN-code: 8742-4109
Scopus Author ID: 294101
Candidate of Medical Sciences, Associate Professor
Russian Federation, Lenina 3, Ufa, 450008Angelina A. Khechumyan
Rostov state medical university
Email: angelina.koroleva.2016@yandex.ru
ORCID iD: 0009-0006-4262-1712
student
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Ambartsum O. Khoshafyan
Rostov state medical university
Email: a-khoshafyan@mail.ru
ORCID iD: 0009-0003-5786-6059
student
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Gasan V. Pashaev
Rostov state medical university
Email: pasaevgasan54@gmail.com
ORCID iD: 0009-0003-3014-3555
student
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Amina A. Mamedkhanova
Rostov state medical university
Email: amina.mamedkhanova@mail.ru
ORCID iD: 0009-0008-6786-642X
student
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Mamed S. Mamedov
Rostov state medical university
Email: Mamedov.939@mail.ru
ORCID iD: 0009-0005-6292-4297
студент
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Anar A. Mamedkhanov
Rostov state medical university
Email: amamedkhanov.dok@mail.ru
ORCID iD: 0009-0009-3231-4681
student
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Aisa V. Kankaeva
Rostov state medical university
Email: kankaeva.a@mail.ru
ORCID iD: 0009-0007-6167-0218
student
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Aizan M. Susarova
Rostov state medical university
Email: aizan.mur@gmail.com
ORCID iD: 0009-0000-4924-1532
student
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Dmitriy V. Minaev
Rostov state medical university
Email: dima.minaev.2000@bk.ru
ORCID iD: 0009-0007-0079-3409
student
Russian Federation, 344022, Russian Federation, Rostov region, Rostov-on-Don, lane Nakhichevan, 29Ilya Yu. Levdik
Far Eastern State Medical University, Khabarovsk, Russian Federation
Email: levdik15@mail.ru
ORCID iD: 0009-0007-3642-6213
student
Russian Federation, 680000, Khabarovsk Territory, Khabarovsk city, Muravyov-Amursky str., 35Alena O. Petrova
Samara state medical university
Email: apetroff01@mail.ru
ORCID iD: 0009-0008-5074-3802
student
Russian Federation, 89 Chapaevskaya str., Samara region, 443099Magomed V. Aliev
Pavlov First Saint Petersburg State Medical University
Email: alievm294@gmail.com
ORCID iD: 0009-0006-1747-6197
student
Russian Federation, 6-8 Lva Tolstogo str., Saint Petersburg, 97022.References
- Larina V.N., Akhmatova F.D., Arakelov S.E., et al. Modern strategies for cardiac rehabilitation after myocardial infarction and percutaneous coronary intervention. Kardiologiia. 2020;60(3):111-118. (In Russ.) https://doi.org/10.18087/cardio.2020.3.n546
- Protasov EА, Velikanov AA. Cardiac rehabilitation today: opportunities and challenges. Russian Family Doctor. 2019;23(1):17-26. (In Russ.). doi: 10.17816/RFD2019117-26
- Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020 ;41(3):407-477. doi: 10.1093/eurheartj/ehz425
- Bubnova MG, Aronov DM. Cardiac rehabilitation: stages, principles and international classification of functioning (ICF). Russian Journal of Preventive Medicine. 2020;23(5):40‑49. (In Russ.) doi: 10.17116/profmed20202305140
- Fang J, Ayala C, Luncheon C, et al. Use of Outpatient Cardiac Rehabilitation Among Heart Attack Survivors - 20 States and the District of Columbia, 2013 and Four States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66(33):869-873. doi: 10.15585/mmwr.mm6633a1.
- Gabrys L, Schmidt C. Prescription and Utilization of Sports Therapy Programs following Cardiac Rehabilitation 2006-2013. Rehabilitation (Stuttg). 2020;59(1):42-47. doi: 10.1055/a-0869-9810
- Pomeshkina S.A., Bezzubova V.A., Zvereva T.N., et al. Factors affecting adherence to physical training in the outpatient phase of rehabilitation, in patients after coronary artery bypass grafting. Kardiologiia. 2022;62(6):37-44. https://doi.org/10.18087/cardio.2022.6.n1756
- Sushchevich D.S., Rudchenko I.V., Kachnov V.A. The effect of physical exercise on metabolism and remodeling of the cardiovascular system. The science of the young is Eruditio Juvenium. 8 (3): 433-443. (In Russ.).
- Baman JR, Sekhon S, Maganti K. Cardiac Rehabilitation. JAMA. 2021;326(4):366. doi: 10.1001/jama.2021.5952.
- Baman JR, Sekhon S, Maganti K. Cardiac Rehabilitation. JAMA. 2021;326(4):366. doi: 10.1001/jama.2021.5952.
- Piercy KL, Troiano RP. Physical Activity Guidelines for Americans From the US Department of Health and Human Services. Circ Cardiovasc Qual Outcomes. 2018;11(11):e005263. doi: 10.1161/CIRCOUTCOMES.118.005263.
- Zhou MC, Hong Y. Updated essentials of scientific exercise and training in the 6th edition of the guidelines for cardiac rehabilitation programs by American Association of Cardiovascular and Pulmonary Rehabilitation [J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease. 2021;29(6):1–6
- Kakuchaya TT, Dzhitava TG, Pachuashvili NV, et al. Comparative analysis of aerobic cardiorespiratory training of high and moderate intensity in cardiac surgery profile patients. CardioSomatics. 2021;12(4):190-199. doi: 10.17816/22217185.2021.4.201261
- Arnett DK, Blumenthal RS, Albert MA, et al.. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596-e646. doi: 10.1161/CIR.0000000000000678
- Aronov DM. Methodological issues in the organization and implementation of outpatient rehabilitation exercise programs in patients with different forms of coronary heart disease. CardioSomatics. 2013;4(1):23-28. doi: 10.26442/CS45004
- Feito Y, Heinrich KM, Butcher SJ, Poston WSC. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports (Basel). 2018;6(3):76. doi: 10.3390/sports6030076.
- Ribeiro PAB, Boidin M, Juneau M, et al. High-intensity interval training in patients with coronary heart disease: Prescription models and perspectives. Ann Phys Rehabil Med. 2017;60(1):50-57. doi: 10.1016/j.rehab.2016.04.004
- Kleinnibbelink G, van Dijk APJ, Fornasiero A, et al. Acute exercise-induced changes in cardiac function relates to right ventricular remodeling following 12-wk hypoxic exercise training. J Appl Physiol (1985). 2021;131(2):511-519. doi: 10.1152/japplphysiol.01075.2020.
- Zhao S, Zu Y, Lu M, Jia X, Chen X. Effect of Tai Chi on cardiac function in patients with myocardial infarction: A protocol for a randomized controlled trial. Medicine (Baltimore). 2021;100(42):e27446. doi: 10.1097/MD.0000000000027446.
- Mao S, Zhang X, Shao B, et al. Baduanjin Exercise Prevents post-Myocardial Infarction Left Ventricular Remodeling (BE-PREMIER trial): Design and Rationale of a Pragmatic Randomized Controlled Trial. Cardiovasc Drugs Ther. 2016;30(3):315-22. doi: 10.1007/s10557-016-6660-7.
- Guo Y, Sui JY, Kim K, et al. Cardiomyocyte Homeodomain-Interacting Protein Kinase 2 Maintains Basal Cardiac Function via Extracellular Signal-Regulated Kinase Signaling. Circulation. 2019 Nov 26;140(22):1820-1833. doi: 10.1161/CIRCULATIONAHA.119.040740.
- Zhou Q, Deng J, Yao J, et al. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine. 2021;74:103713. doi: 10.1016/j.ebiom.2021.103713.
- Shi J, Bei Y, Kong X, Liu X, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017 Jan 15;7(3):664-676. doi: 10.7150/thno.15162.
- Yu Y, Chen W, Yu M, et al. Exercise-Generated β-Aminoisobutyric Acid (BAIBA) Reduces Cardiomyocyte Metabolic Stress and Apoptosis Caused by Mitochondrial Dysfunction Through the miR-208b/AMPK Pathway. Front Cardiovasc Med. 2022;9:803510. doi: 10.3389/fcvm.2022.803510.
- Wu X, Wang L, Wang K, et al. ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol Ther. 2022;30(1):400-414. doi: 10.1016/j.ymthe.2021.07.004.
- Gao R, Wang L, Bei Y, et al. Long Noncoding RNA Cardiac Physiological Hypertrophy-Associated Regulator Induces Cardiac Physiological Hypertrophy and Promotes Functional Recovery After Myocardial Ischemia-Reperfusion Injury. Circulation. 2021;144(4):303-317. doi: 10.1161/CIRCULATIONAHA.120.050446.
- Peixoto TC, Begot I, Bolzan DW, et al. Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction: a randomized controlled trial. Can J Cardiol. 2015;31(3):308-13. doi: 10.1016/j.cjca.2014.11.014.
- Bo W, Ma Y, Xi Y, et al. The Roles of FGF21 and ALCAT1 in Aerobic Exercise-Induced Cardioprotection of Postmyocardial Infarction Mice. Oxid Med Cell Longev. 2021;2021:8996482. doi: 10.1155/2021/8996482
- Ma Y, Kuang Y, Bo W, et al. Exercise Training Alleviates Cardiac Fibrosis through Increasing Fibroblast Growth Factor 21 and Regulating TGF-β1-Smad2/3-MMP2/9 Signaling in Mice with Myocardial Infarction. Int J Mol Sci. 2021;22(22):12341. doi: 10.3390/ijms222212341
- Jia D, Hou L, Lv Y, et al.. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling. J Cell Physiol. 2019;234(12):23705-23718. doi: 10.1002/jcp.28939.
- Qu X, Du Y, Shu Y, et al.MIAT Is a Pro-fibrotic Long Non-coding RNA Governing Cardiac Fibrosis in Post-infarct Myocardium. Sci Rep. 2017;7:42657. doi: 10.1038/srep42657.
- Zhang JC, Xia L, Jiang Y, et al. Effect of lncRNA GAS5 on rats with acute myocardial infarction through regulating miR-21. Eur Rev Med Pharmacol Sci. 2019;23(19):8573-8579. doi: 10.26355/eurrev_201910_19173
- Farsangi SJ, Rostamzadeh F, Sheikholeslami M, et al. Modulation of the Expression of Long Non-Coding RNAs H19, GAS5, and MIAT by Endurance Exercise in the Hearts of Rats with Myocardial Infarction. Cardiovasc Toxicol. 2021;21(2):162-168. doi: 10.1007/s12012-020-09607-0.
- Song W, Liang Q, Cai M, Tian Z. HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats. J Cell Mol Med. 2020;24(22):12970-12979. doi: 10.1111/jcmm.15892.
- Xi Y, Hao M, Liang Q, et al. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction. J Sport Health Sci. 2021;10(5):594-603. doi: 10.1016/j.jshs.2020.11.010.
- Cai MX, Shi XC, Chen T, et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci. 2016; 149:1-9. doi: 10.1016/j.lfs.2016.02.055.
- Shi X, Luo X, Xu X. Dimethylarginine dimethylaminohydrolase-1 contributes to exercise-induced cardiac angiogenesis in mice. Biosci Trends. 2020;14(2):115-122. doi: 10.5582/bst.2019.01351.
- Xia WH, Li J, Su C, et al. Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men. Aging Cell. 2012;11(1):111-9. doi: 10.1111/j.1474-9726.2011.00758.x.
- Wang B, Zhou R, Wang Y, et al. Effect of high-intensity interval training on cardiac structure and function in rats with acute myocardial infarct. Biomed Pharmacother. 2020;131:110690. doi: 10.1016/j.biopha.2020.110690
- Souza LM, Okoshi MP, Gomes MJ, et al. Effects of Late Aerobic Exercise on Cardiac Remodeling of Rats with Small-Sized Myocardial Infarction. Arq Bras Cardiol. 2021;116(4):784-792. English, Portuguese. doi: 10.36660/abc.20190813.
- Liao Z, Li D, Chen Y, et al. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats. J Cell Mol Med. 2019;23(12):8328-8342. doi: 10.1111/jcmm.14710.
- Guizoni DM, Oliveira-Junior SA, Noor SL, et al. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. Int J Cardiol. 2016;221:406-12. doi: 10.1016/j.ijcard.2016.07.072.
- Marcin T, Trachsel LD, Dysli M, et al. Effect of self-tailored high-intensity interval training versus moderate-intensity continuous exercise on cardiorespiratory fitness after myocardial infarction: A randomised controlled trial. Ann Phys Rehabil Med. 2022;65(1):101490. doi: 10.1016/j.rehab.2021.101490.
- Cai M, Wang L, Ren YL. Effect of exercise training on left ventricular remodeling in patients with myocardial infarction and possible mechanisms. World J Clin Cases. 2021;9(22):6308-6318. doi: 10.12998/wjcc.v9.i22.6308.
- Trachsel LD, David LP, Gayda M, et al. The impact of high-intensity interval training on ventricular remodeling in patients with a recent acute myocardial infarction-A randomized training intervention pilot study. Clin Cardiol. 2019;42(12):1222-1231. doi: 10.1002/clc.23277.
- Jayo-Montoya JA, Jurio-Iriarte B, Aispuru GR, et al. Chronotropic Responses to Exercise and Recovery in Myocardial Infarction Patients Taking β-Blockers Following Aerobic High-Intensity Interval Training: AN INTERFARCT STUDY. J Cardiopulm Rehabil Prev. 2022;42(1):22-27. doi: 10.1097/HCR.0000000000000607
- Khadanga S, Savage PD, Pecha A, et al. Optimizing Training Response for Women in Cardiac Rehabilitation: A Randomized Clinical Trial. JAMA Cardiol. 2022;7(2):215-218. doi: 10.1001/jamacardio.2021.4822.
- Yakut H, Dursun H, Felekoğlu E, et al. Effect of home-based high-intensity interval training versus moderate-intensity continuous training in patients with myocardial infarction: a randomized controlled trial. Ir J Med Sci. 2022;191(6):2539-2548. doi: 10.1007/s11845-021-02867-x.
- Dor-Haim H, Horowitz M, Yaakobi E, et al.. Intermittent aerobic-resistance interval training versus continues aerobic training: Improvement in cardiac electrophysiologic and anthropometric measures in male patients post myocadiac infarction, a randomized control trial. PLoS One. 2022;17(5):e0267888. doi: 10.1371/journal.pone.0267888
- Eser P, Jaeger E, Marcin T, et al. Acute and chronic effects of high-intensity interval and moderate-intensity continuous exercise on heart rate and its variability after recent myocardial infarction: A randomized controlled trial. Ann Phys Rehabil Med. 2022;65(1):101444. doi: 10.1016/j.rehab.2020.09.008.
- Kollet DP, Marenco AB, Bellé NL, et al. Aerobic exercise, but not isometric handgrip exercise, improves endothelial function and arterial stiffness in patients with myocardial infarction undergoing coronary intervention: a randomized pilot study. BMC Cardiovasc Disord. 2021;21(1):101. doi: 10.1186/s12872-021-01849-2.
- Jiang M, Hua M, Zhang X, et al. Effect analysis of kinetic energy progressive exercise in patients with acute myocardial infarction after percutaneous coronary intervention: a randomized trial. Ann Palliat Med. 2021;10(7):7823-7831. doi: 10.21037/apm-21-1478.
- Grabara M, Nowak Z, Nowak A. Effects of Hatha Yoga on Cardiac Hemodynamic Parameters and Physical Capacity in Cardiac Rehabilitation Patients. J Cardiopulm Rehabil Prev. 2020;40(4):263-267. doi: 10.1097/HCR.0000000000000503.
- McGREGOR G, Gaze D, Oxborough D, et al. Reverse left ventricular remodeling: effect of cardiac rehabilitation exercise training in myocardial infarction patients with preserved ejection fraction. Eur J Phys Rehabil Med. 2016 Jun;52(3):370-8.
- Giallauria F, Cirillo P, D'agostino M, et al. Effects of exercise training on high-mobility group box-1 levels after acute myocardial infarction. J Card Fail. 2011;17(2):108-14. doi: 10.1016/j.cardfail.2010.09.001
- Kubo N, Ohmura N, Nakada I, et al. Exercise at ventilatory threshold aggravates left ventricular remodeling in patients with extensive anterior acute myocardial infarction. Am Heart J. 2004;147(1):113-20. doi: 10.1016/s0002-8703(03)00521-0.
- Chambers J. Aortic stenosis. BMJ. 2005;330(7495):801-2. doi: 10.1136/bmj.330.7495.801.
- Yap SC, Takkenberg JJ, Witsenburg M, et al. Aortic stenosis at young adult age. Expert Rev Cardiovasc Ther. 2005;3(6):1087-98. doi: 10.1586/14779072.3.6.1087.
- Zeppilli P, Bianco M, Bria S, Palmieri V. Bicuspid aortic valve: an innocent finding or a potentially life-threatening anomaly whose complications may be elicited by sports activity? J Cardiovasc Med (Hagerstown). 2006;7(4):282-7. doi: 10.2459/01.JCM.0000219322.04881.9e.
- Scharhag J, Meyer T, Kindermann I, et al. Bicuspid aortic valve: evaluation of the ability to participate in competitive sports: case reports of two soccer players. Clin Res Cardiol. 2006;95(4):228-34. doi: 10.1007/s00392-006-0359-x.
- Schultz RL, Swallow JG, Waters RP, et al. Effects of excessive long-term exercise on cardiac function and myocyte remodeling in hypertensive heart failure rats. Hypertension. 2007;50(2):410-6. doi: 10.1161/HYPERTENSIONAHA.106.086371.
- Kandilova V.N. Heart and vessel remodeling in different age groups of patients with arterial hypertension. Eurasian heart journal. 2019;(4):86-96. https://doi.org/10.38109/2225-1685-2019-4-86-96
- Basic Transl Sci. 2019;4(3):449-467. doi: 10.1016/j.jacbts.2019.02.006
- Lim SL, Lam CS, Segers VF, et al. Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J. 2015;36(31):2050-2060. doi: 10.1093/eurheartj/ehv132
- Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med. 2022;9:896782. doi: 10.3389/fcvm.2022.896782.
- Su SA, Xie Y, Fu Z, et al. Emerging role of exosome-mediated intercellular communication in vascular remodeling. Oncotarget. 2017;8(15):25700-25712. doi: 10.18632/oncotarget.14878.
- Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell. 2018;172(3):393-407. doi: 10.1016/j.cell.2018.01.011.
- Ponnusamy M, Liu F, Zhang YH, et al. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation. 2019;139(23):2668-2684. doi: 10.1161/CIRCULATIONAHA.118.035832.
- Mathiyalagan P, Adamiak M, Mayourian J, et al. FTO-Dependent N6-Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation. 2019;139(4):518-532. doi: 10.1161/CIRCULATIONAHA.118.033794
- Zhang T, Zhang Y, Cui M, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22(2):175-82. doi: 10.1038/nm.4017.
- Ghardashi Afousi A, Gaeini A, Rakhshan K, et al. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia / reperfusion injury. J Cell Commun Signal. 2019;13(2):255-267. doi: 10.1007/s12079-018-0481-3.
- Radugin F.M., Timkina N.V., Karonova T.L. Metabolic properties of irisin in health and in diabetes mellitus. Obesity and metabolism. 2022;19(3):332-339. (In Russ.) https://doi.org/10.14341/omet12899
- Hassaan PS, Nassar SZ, Issa Y, Zahran N. Irisin vs. Treadmill Exercise in Post Myocardial Infarction Cardiac Rehabilitation in Rats. Arch Med Res. 2019;50(2):44-54. doi: 10.1016/j.arcmed.2019.05.009.
- Lee SE, Nguyen C, Yoon J, et al. Three-dimensional Cardiomyocytes Structure Revealed By Diffusion Tensor Imaging and Its Validation Using a Tissue-Clearing Technique. Sci Rep. 2018;8(1):6640. doi: 10.1038/s41598-018-24622-6.
- Eder RA, van den Boomen M, Yurista SR, et al. Exercise-induced CITED4 expression is necessary for regional remodeling of cardiac microstructural tissue helicity. Commun Biol. 2022 Jul 4;5(1):656. doi: 10.1038/s42003-022-03635-y. Erratum in: Commun Biol. 2022;5(1):696. doi: 10.1038/s42003-022-03671-8.
- Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. Adv Exp Med Biol. 2017;999:117-136. doi: 10.1007/978-981-10-4307-9_8.
- Davis J, Burr AR, Davis GF, et al. A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell. 2012;23(4):705-15. doi: 10.1016/j.devcel.2012.08.017
- Fernandes T, Baraúna VG, Negrão CE, et al. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol. 2015;309(4):H543-52. doi: 10.1152/ajpheart.00899.2014.
- Opstad TB, Seljeflot I, Bøhmer E, et al. MMP-9 and Its Regulators TIMP-1 and EMMPRIN in Patients with Acute ST-Elevation Myocardial Infarction: A NORDISTEMI Substudy. Cardiology. 2018;139(1):17-24. doi: 10.1159/000481684.
- Brianezi L, Ornelas E, Gehrke FS, et al. Effects of Physical Training on the Myocardium of Oxariectomized LDLr Knockout Mice: MMP 2/9, Collagen I/III, Inflammation and Oxidative Stress. Arq Bras Cardiol. 2020 Jan;114(1):100-105. doi: 10.5935/abc.20190223.
- Lighthouse JK, Burke RM, Velasquez LS, et al. Exercise promotes a cardioprotective gene program in resident cardiac fibroblasts. JCI Insight. 2019;4(1):e92098. doi: 10.1172/jci.insight.92098
- Cai Y, Xie KL, Zheng F, Liu SX. Aerobic Exercise Prevents Insulin Resistance Through the Regulation of miR-492/Resistin Axis in Aortic Endothelium. J Cardiovasc Transl Res. 2018;11(6):450-458. doi: 10.1007/s12265-018-9828-7.
- Donghui T, Shuang B, Xulong L, et al. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc Res. 2019;123:86-91. doi: 10.1016/j.mvr.2018.10.009.
- Ouchi N, Oshima Y, Ohashi K, et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem. 2008;283(47):32802-11. doi: 10.1074/jbc.M803440200.
- Xi Y, Hao M, Liang Q, et al. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction. J Sport Health Sci. 2021;10(5):594-603. doi: 10.1016/j.jshs.2020.11.010.
- Pourheydar B, Biabanghard A, Azari R, et al. Exercise improves aging-related decreased angiogenesis through modulating VEGF-A, TSP-1 and p-NF-Ƙb protein levels in myocardiocytes. J Cardiovasc Thorac Res. 2020;12(2):129-135. doi: 10.34172/jcvtr.2020.21.
- Chen J, Gu S, Song Y, et al. The impact of cardiomotor rehabilitation on endothelial function in elderly patients with chronic heart failure. BMC Cardiovasc Disord. 2021;21(1):524. doi: 10.1186/s12872-021-02327-5
- Li WD, Zhou DM, Sun LL, et al. LncRNA WTAPP1 Promotes Migration and Angiogenesis of Endothelial Progenitor Cells via MMP1 Through MicroRNA 3120 and Akt/PI3K/Autophagy Pathways. Stem Cells. 2018;36(12):1863-1874. doi: 10.1002/stem.2904.
- Soori R, Amini AA, Choobineh S, et al. Exercise attenuates myocardial fibrosis and increases angiogenesis-related molecules in the myocardium of aged rats. Arch Physiol Biochem. 2022;128(1):1-6. doi: 10.1080/13813455.2019.1660370.
- Jin K, Gao S, Yang P, et al. Single-Cell RNA Sequencing Reveals the Temporal Diversity and Dynamics of Cardiac Immunity after Myocardial Infarction. Small Methods. 2022;6(3):e2100752. doi: 10.1002/smtd.202100752.
- Zhang QL, Wang W, Jiang Y, et al. GRGM-13 comprising 13 plant and animal products, inhibited oxidative stress induced apoptosis in retinal ganglion cells by inhibiting P2RX7/p38 MAPK signaling pathway. Biomed Pharmacother. 2018;101:494-500. doi: 10.1016/j.biopha.2018.02.107.
- Grebe A, Hoss F, Latz E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res. 2018;122(12):1722-1740. doi: 10.1161/CIRCRESAHA.
- Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol. 2017;18(8):861-869. doi: 10.1038/ni.3772.
- Stachon P, Heidenreich A, Merz J, et al. P2X7 Deficiency Blocks Lesional Inflammasome Activity and Ameliorates Atherosclerosis in Mice. Circulation. 2017;135(25):2524-2533. doi: 10.1161/CIRCULATIONAHA.117.027400.
- Chen X, Li H, Wang K, et al. Aerobic Exercise Ameliorates Myocardial Inflammation, Fibrosis and Apoptosis in High-Fat-Diet Rats by Inhibiting P2X7 Purinergic Receptors. Front Physiol. 2019;10:1286. doi: 10.3389/fphys.2019.01286.
- Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol (1985). 2017;122(5):1077-1087. doi: 10.1152/japplphysiol.00622.2016
- Femminò S, Penna C, Margarita S, et al. Extracellular vesicles and cardiovascular system: Biomarkers and Cardioprotective Effectors. Vascul Pharmacol. 2020;135:106790. doi: 10.1016/j.vph.2020.106790.
- Bei Y, Xu T, Lv D, et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol. 2017;112(4):38. doi: 10.1007/s00395-017-0628-z.
- Yin A, Yuan R, Xiao Q, et al. Exercise-derived peptide protects against pathological cardiac remodeling. EBioMedicine. 2022;82:104164. doi: 10.1016/j.ebiom.2022.104164
Supplementary files
